想到快速幂  但是这题用不上

用迭代加深搜索

注意启发函数为  当前最大数<<(maxx-d)  如果大于n则剪枝

注意跳出语句的两种写法   一种170ms  一种390ms !!!

dfs最后的false一定要加

#include<bits/stdc++.h>
using namespace std;
#define N 1000
int n;
int a[N]; bool dfs(int d,int maxx)
{ if(a[d]==n)return true;
if(d==maxx)return false; // if(d>maxx)return false;
// if(a[d]==n)return true;上面两条语句用下面这两条代替整整慢了一倍时间 if( (a[d]<<(maxx-d))<n )return false; for(int i=d;i>=;i--)
{
a[d+]=a[d]+a[i];
if(dfs(d+,maxx))return true; a[d+]=a[d]-a[i];
if(a[d+]>)
if(dfs(d+,maxx))return true;
}
return false;//一定要加
}
int solve(void)
{
a[]=;
for(int maxx=;;maxx++)
if(dfs(,maxx))return maxx ;
} int main()
{
while(scanf("%d",&n),n)
{
printf("%d\n",solve());
}
}

7-13 Power Calculus 快速幂计算 uva1374的更多相关文章

  1. Power Calculus 快速幂计算 (IDA*/打表)

    原题:1374 - Power Calculus 题意: 求最少用几次乘法或除法,可以从x得到x^n.(每次只能从已经得到的数字里选择两个进行操作) 举例: x^31可以通过最少6次操作得到(5次乘, ...

  2. 矩阵快速幂计算hdu1575

    矩阵快速幂计算和整数快速幂计算相同.在计算A^7时,7的二进制为111,从而A^7=A^(1+2+4)=A*A^2*A^4.而A^2可以由A*A得到,A^4可以由A^2*A^2得到.计算两个n阶方阵的 ...

  3. POJ 3233 Matrix Power Series——快速幂&&等比&&分治

    题目 给定一个 $n \times n$  的矩阵 $A$ 和正整数 $k$ 和 $m$.求矩阵 $A$ 的幂的和. $$S = A + A^2 + ... + A^k$$ 输出 $S$ 的各个元素对 ...

  4. UVa 1374 快速幂计算(dfs+IDA*)

    https://vjudge.net/problem/UVA-1374 题意:给出n,计算最少需要几次能让x成为x^n(x和已经生成的数相乘或相除). 思路:IDA*算法. 如果当前数组中最大的数乘以 ...

  5. uva 1374 快速幂计算

    #include <iostream> #include <cstdio> #include <cmath> #include <cstring> #i ...

  6. UVa 1374 - Power Calculus——[迭代加深搜索、快速幂]

    解题思路: 这是一道以快速幂计算为原理的题,实际上也属于求最短路径的题目类型.那么我们可以以当前求出的幂的集合为状态,采用IDA*方法即可求解.问题的关键在于如何剪枝效率更高.笔者采用的剪枝方法是: ...

  7. POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)

    题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...

  8. UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)

    题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...

  9. 2020牛客寒假算法基础集训营1 J. 缪斯的影响力 (矩阵快速幂/费马小定理降幂)

    https://ac.nowcoder.com/acm/problem/200658 f(n) = f(n-1) * f(n-2) * ab ,f的第一项是x,第二项是y. 试着推出第三项是x·y·a ...

随机推荐

  1. http请求头和响应头详细解释

    想对http请求头和响应头有更细致的了解,请看如下 Requests部分 Header 解释 示例 Accept 指定客户端能够接收的内容类型 Accept: text/plain, text/htm ...

  2. Java 避免精度丢失之BigDecimal 运算

    * 由于Java的简单类型不能够精确的对浮点数进行运算,这个工具类提供精确的浮点数运算,包括加减乘除和四舍五入 import java.math.BigDecimal; /** 计算工具类 */ pu ...

  3. MYSQL 在当前时间加上或减去一个时间段

    update user set time1=now(),time2=date_add(NOW(), interval 1 MONTH) where id=1; date_add() 增加date_su ...

  4. yum安装_yum命令的相关操作

    2017年1月11日, 星期三 yum安装的四种方式 一.默认:从国外下载 二.国内:从阿里获取  http://mirrors.aliyun.com 1. cd /etc/yum.repos.d 2 ...

  5. Redis学习三:Redis数据类型

    一.Redis的五大数据类型 1.String(字符串) string是redis最基本的类型,你可以理解成与Memcached一模一样的类型,一个key对应一个value.string类型是二进制安 ...

  6. 【CC2530强化实训04】定时器间隔定时实现按键N连击

    [CC2530强化实训04]定时器间隔定时实现按键N连击 [题目要求]      2018年全国职业院校技能大赛“物联网技术应用”国赛(高职组)中关于感知层开发的难度陡然增大,三个题目均在Zigbee ...

  7. 【FCS NOI2018】福建省冬摸鱼笔记 day1

    省冬的第一天. 带了本子,笔,一本<算法导论>就去了.惊讶于为什么同学不带本子记笔记. 他们说:“都学过了.”,果然这才是巨神吧. 第一天:数论,讲师:zzx 前几页的课件挺水,瞎记了点笔 ...

  8. SQLServer数据操作(建库、建表以及数据的增删查改)[转]

    SQLSever数据操作   一.建立数据库:   create database DB ---数据库名称 (          name=data1 --文件名,          filename ...

  9. MVC中检测到有潜在危险的 Request.Form 值

    在做mvc项目时,当使用xhedit or.ueditor编辑器时,点击提交时,编辑器中的内容会带有html标签提交给服务器,这时就是会报错,出现如下内容: “/”应用程序中的服务器错误. 从客户端( ...

  10. 002_安装第三方APP好的站点及解除安全与隐私限制

    一.解除安全与隐私限制的任何来源. http://bbs.feng.com/read-htm-tid-10714286.html 接下来,我们就打开终端,然后输入以下命令:   sudo spctl ...