【LOJ】 #2025. 「JLOI / SHOI2016」方
题解
有什么LNOI啊,最后都是JLOI罢了
一道非常……懵逼的统计题
当然是容斥,所有的方案 - 至少有一个点坏掉的正方形 + 至少有两个点坏掉的正方形 - 至少有三个点坏掉的正方形 + 至少有四个点坏掉的正方形
总共的方案就是
\(\sum_{i}^{min(n,m)}i \* (n - i + 1) \* (m - i + 1)\)
至少有一个点坏掉的怎么统计,我们考虑这个点在底边,左边有l个坐标右边有r个坐标,上面有h个坐标
设\(z = min(l + r,h)\)
如果高度大于左右两边,那么总共的是\(\frac{z(z + 1)}{2} + z\)
如果有超出的部分,即\(z > l\),或\(z > r\)设差值为n,则多出去的就是\(\frac{n(n + 1)}{2}\)
然后两两枚举点对,最后统计出来的3个点要除3,统计出来4个点的要除6
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <map>
#define MAXN 100005
#define pii pair<int,int>
#define fi first
#define se second
//#define ivorysi
using namespace std;
typedef long long int64;
int N,M,K;
pii P[2005];
map<pii,bool> mmm;
const int MOD = 100000007;
int64 ans,cnt2,cnt3,cnt4;
void sub(int l,int r,int h) {
int z = min(l + r,h);
ans -= 1LL * z * (z + 3) / 2;
if(z > l) ans += 1LL * (z - l) * (z - l + 1) / 2;
if(z > r) ans += 1LL * (z - r) * (z - r + 1) / 2;
ans = (ans % MOD + MOD) % MOD;
}
bool in_range(int x,int l,int r) {
if(x >= l && x <= r) return 1;
return 0;
}
void check(pii A,pii B) {
if(!in_range(A.fi,0,N) || !in_range(A.se,0,M) || !in_range(B.fi,0,N) || !in_range(B.se,0,M)) return;
++cnt2;
int t = mmm.count(A) + mmm.count(B);
if(t >= 1) ++cnt3;
if(t >= 2) ++cnt4,++cnt3;
}
void Solve() {
scanf("%d%d%d",&N,&M,&K);
for(int i = 1 ; i <= K ; ++i) {
scanf("%d%d",&P[i].fi,&P[i].se);
mmm[P[i]] = 1;
}
for(int i = 1 ; i <= min(N,M) ; ++i) {
ans += 1LL * i * (N - i + 1) % MOD * (M - i + 1) % MOD;
ans %= MOD;
}
for(int i = 1 ; i <= K ; ++i) {
sub(P[i].fi,N - P[i].fi,P[i].se);
sub(P[i].fi,N - P[i].fi,M - P[i].se);
sub(P[i].se,M - P[i].se,P[i].fi);
sub(P[i].se,M - P[i].se,N - P[i].fi);
ans += min(P[i].fi,P[i].se);
ans += min(P[i].fi,M - P[i].se);
ans += min(N - P[i].fi,P[i].se);
ans += min(N - P[i].fi,M - P[i].se);
ans %= MOD;
}
for(int i = 1 ; i <= K ; ++i) {
for(int j = i + 1 ; j <= K ; ++j) {
int dx = P[i].fi - P[j].fi,dy = P[i].se - P[j].se;
check(make_pair(P[i].fi - dy,P[i].se + dx),make_pair(P[j].fi - dy,P[j].se + dx));
check(make_pair(P[i].fi + dy,P[i].se - dx),make_pair(P[j].fi + dy,P[j].se - dx));
if(abs(dx) + abs(dy) & 1) continue;
int x = (dx - dy) >> 1,y = (dx + dy) >> 1;
check(make_pair(P[i].fi - x,P[i].se - y),make_pair(P[j].fi + x,P[j].se + y));
}
}
ans += cnt2 - cnt3 / 3 + cnt4 / 6;
ans = (ans % MOD + MOD) % MOD;
printf("%lld\n",ans);
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}
【LOJ】 #2025. 「JLOI / SHOI2016」方的更多相关文章
- loj #2025. 「JLOI / SHOI2016」方
#2025. 「JLOI / SHOI2016」方 题目描述 上帝说,不要圆,要方,于是便有了这道题. 由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形.上帝把我们派到了一个有 NNN ...
- loj #2024. 「JLOI / SHOI2016」侦查守卫
#2024. 「JLOI / SHOI2016」侦查守卫 题目描述 小 R 和 B 神正在玩一款游戏.这款游戏的地图由 nnn 个点和 n−1n - 1n−1 条无向边组成,每条无向边连接两个点, ...
- loj #2026. 「JLOI / SHOI2016」成绩比较
#2026. 「JLOI / SHOI2016」成绩比较 题目描述 THU 的 G 系中有许许多多的大牛,比如小 R 的室友 B 神.B 神已经厌倦了与其他的同学比较 GPA(Grade Poin ...
- LOJ #2026「JLOI / SHOI2016」成绩比较
很好的锻炼推柿子能力的题目 LOJ #2026 题意 有$n$个人$ m$门学科,第$ i$门的分数为不大于$U_i$的一个正整数 定义A「打爆」B当且仅当A的每门学科的分数都不低于B的该门学科的分数 ...
- 【LOJ】#2026. 「JLOI / SHOI2016」成绩比较
题解 用\(f[i][j]\)表示考虑了前i个排名有j个人被碾压 \(f[i][j] = f[i - 1][k] \* C[k][j] \* C[N - k - 1][N - r[i] - j] \* ...
- 【LOJ】#2024. 「JLOI / SHOI2016」侦查守卫
题解 童年的回忆! 想当初,这是我考的第一次省选,我当时初二,我什么都不会,然后看着这个东西,是不是能用我一个月前才会的求lca,光这个lca我就调了一个多小时= =,然后整场五个小时,我觉得其他题不 ...
- loj2026 「JLOI / SHOI2016」成绩比较
orz #include <iostream> #include <cstdio> using namespace std; typedef long long ll; int ...
- loj2024「JLOI / SHOI2016」侦查守卫
too hard #include <iostream> #include <cstdio> using namespace std; int n, d, m, uu, vv, ...
- Loj #2495. 「AHOI / HNOI2018」转盘
Loj #2495. 「AHOI / HNOI2018」转盘 题目描述 一次小 G 和小 H 原本准备去聚餐,但由于太麻烦了于是题面简化如下: 一个转盘上有摆成一圈的 \(n\) 个物品(编号 \(1 ...
随机推荐
- AutoLayout中使用UIScrollView
UIScrollView 在 Auto Layout 是一个很特殊的 view,对于 UIScrollView 的 subview 来说,它的 leading/trailing/top/bottom ...
- MacOS Sierra允许运行任何来源的程序
参考自http://bbs.feng.com/read-htm-tid-10584598.html Mac新系统 Sierra中默认已经看不到“任何来源”的选项,就无法安装很多的第三方程序,所以需要做 ...
- 权限 mock location
1.集成环信的时候,该权限报错: mock location权限是是“允许程序创建模拟位置”,主要是提供用于测试.打包的时候并不需要,所以解决办法分两步: 1.声明tools 2.添加忽略:
- Java并发编程原理与实战四十一:重排序 和 happens-before
一.概念理解 首先我们先来了解一下什么是重排序:重排序是指编译器和处理器为了优化程序性能而对指令序列进行重新排序的一种手段. 从Java源代码到最终实际执行的指令序列,会分别经历下面3种重排序,如下图 ...
- python 三种遍历列表里面序号和值的方法
list = ['html', 'js', 'css', 'python'] # 方法1 # 遍历列表方法1:' for i in list: print("序号:%s 值:%s" ...
- VBS 重启 TP-Link 路由器
分享一个自己用的小工具,重启TP-Link路由器的,好像还是大学时候写的,献丑了. 其他路由器可能有些不同,但是思路都是差不多的. user = "admin" '路由器帐号 pa ...
- mysql 距离函数
要有超级权限 SET GLOBAL log_bin_trust_function_creators = 1;DELIMITER $$CREATE DEFINER=`root`@`localhost` ...
- serialize()传值缺失
思路:serialize()获取的是 " & " 拼接的字符串,无法传值,需要拆分后,拼接,生成新字符串,传过去. 例子: var v_idd = $("form ...
- Oracle分析函数Over()
一.Over()分析函数 说明:聚合函数(如sum().max()等)可以计算基于组的某种聚合值,但是聚合函数对于某个组只能返回一行记录.若想对于某组返回多行记录,则需要使用分析函数. 1.rank( ...
- sql server 查询本周、本月所有天数的数据
查询本月所有的天数: --本月所有的天数 ),) day from (),,)+'-01' day) t1, ( ) t2 ),) ),,)+'%' 查询本周所有的天数: ),,),) ),,),) ...