Description

Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single
string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of
N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).

Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two
different IDs ("abcb" and "bcba").

FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards).
Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding
a string longer or shorter than the original string.

Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤
cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so
it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.

Input

Line 1: Two space-separated integers: N and
M

Line 2: This line contains exactly M characters which constitute the initial ID string


Lines 3..N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.

Output

Line 1: A single line with a single integer that is the minimum cost to change the given name tag.

Sample Input

3 4
abcb
a 1000 1100
b 350 700
c 200 800

Sample Output

900

题意:一串字母序列。经过添加或删减某个字符使得序列成为回文,添加和删减都有花费,问花费最少多少。
设dp[i][j]为从i到j的花费。
dp[i][j] = min ( dp[i+1][j]+cost[i] , dp[i][j-1]+cost[j] );  ( a[i] != a[j] )
dp[i][j] = dp[i+1][j-1] ( a[i] == a[j] )
cost[]里存的就是每一个字符删减或者添加的较小的值,由于删掉a[i]和在j后面添加一个a[i]效果是一样的,仅仅需比較两者的花费谁更小

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long LL;
const int MAX=0x3f3f3f3f;
int n,m,cost[30],dp[2007][2005];
char s[2005],cc[3];
int main()
{
scanf("%d%d%s",&n,&m,s);
for(int i=0;i<n;i++) {
int xx,yy;
scanf("%s %d %d",cc,&xx,&yy);
cost[ cc[0]-'a' ] = min(xx,yy);
}
for(int j=1;j<m;j++)
for(int i=j-1;i>=0;i--)
if( s[i] == s[j] ) dp[i][j] = dp[i+1][j-1];
else dp[i][j] = min( dp[i+1][j]+cost[ s[i]-'a' ] ,dp[i][j-1]+cost[ s[j]-'a' ] );
printf("%d\n",dp[0][m-1]);
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

POJ 3280 Cheapest Palindrome (DP)的更多相关文章

  1. POJ 3280 Cheapest Palindrome(DP)

    题目链接 题意 :给你一个字符串,让你删除或添加某些字母让这个字符串变成回文串,删除或添加某个字母要付出相应的代价,问你变成回文所需要的最小的代价是多少. 思路 :DP[i][j]代表的是 i 到 j ...

  2. POJ 3280 Cheapest Palindrome(DP 回文变形)

    题目链接:http://poj.org/problem?id=3280 题目大意:给定一个字符串,可以删除增加,每个操作都有代价,求出将字符串转换成回文串的最小代价 Sample Input 3 4 ...

  3. POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)

    题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思 ...

  4. POJ 3280 Cheapest Palindrome(区间dp)

    dp[i][j]表示处理完i到j的花费,如果s[i] == s[j] 则不需要处理,否则处理s[i]或s[j], 对一个字符ch,加上ch或删掉ch对区间转移来说效果是一样的,两者取min. #inc ...

  5. POJ 3280 - Cheapest Palindrome - [区间DP]

    题目链接:http://poj.org/problem?id=3280 Time Limit: 2000MS Memory Limit: 65536K Description Keeping trac ...

  6. POJ 3280 Cheapest Palindrome【DP】

    题意:对一个字符串进行插入删除等操作使其变成一个回文串,但是对于每个字符的操作消耗是不同的.求最小消耗. 思路: 我们定义dp [ i ] [ j ] 为区间 i 到 j 变成回文的最小代价.那么对于 ...

  7. (中等) POJ 3280 Cheapest Palindrome,DP。

    Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system ...

  8. POJ 3280 Cheapest Palindrome 简单DP

    观察题目我们可以知道,实际上对于一个字母,你在串中删除或者添加本质上一样的,因为既然你添加是为了让其对称,说明有一个孤立的字母没有配对的,也就可以删掉,也能满足对称. 故两种操作看成一种,只需要保留花 ...

  9. POJ 3280 Cheapest Palindrome (区间DP) 经典

    <题目链接> 题目大意: 一个由小写字母组成的字符串,给出字符的种类,以及字符串的长度,再给出添加每个字符和删除每个字符的代价,问你要使这个字符串变成回文串的最小代价. 解题分析: 一道区 ...

随机推荐

  1. 怎样在C++中获得完整的类型名称

    Wrote by mutouyun. (http://darkc.at/cxx-get-the-name-of-the-given-type/) 地球人都知道C++里有一个typeid操作符能够用来获 ...

  2. Fedora16 安装相关

    安装BCM4312无线网卡驱动 Linux系统BCM4312无线网卡驱动的安装 联想Y450 Linux系统 无线网卡驱动安装 准备工作: Broadcom官网驱动下载地址 http://www.br ...

  3. @font-face(css3属性)实如今网页中嵌入随意字体

    @font-face语法规则 @font-face { font-family: <YourWebFontName>; src: <source> [<format> ...

  4. 基于HttpClient 4.3的可訪问自签名HTTPS网站的新版工具类

    本文出处:http://blog.csdn.net/chaijunkun/article/details/40145685,转载请注明.因为本人不定期会整理相关博文,会对相应内容作出完好.因此强烈建议 ...

  5. Java设计模式之认识阶段

    设计模式是什么? 设计模式(Design pattern)是一套被重复使用.多数人知晓的.经过分类编目的.代码设计经验的总结. 其本质就是继承与接口的组合应用. 为什么要用设计模? 使用设计模式是为了 ...

  6. 重新启动IIS服务的方法

    WINDOWS提供WEB服务的IIS有时候会出现訪问过大导致站点打不开,这时重新启动IIS是最好的选择. 1.界面操作 打开"控制面板"->"管理工具"- ...

  7. 用数组array代替CActiveRecord构建CArrayDataProvider

    当需要构建 GridView的时候: 常常用 CArrayDataProvider 或者 CActiveDataProvider 这是就需要一个CActiveRecord 比如:  857       ...

  8. STM32W108无线传感器网络嵌入式uCOS-II的移植及实时环境监測

    基于STM32W108无线开发板,将ucos-ii v2.86内核移植到其上,并加入用户任务.实现对温湿度.超声波.声音.光敏等传感器的控制及实时数据採集. 14.1开发环境说明 硬件:STM32W1 ...

  9. 【ArcGIS 10.2新特性】ArcGIS 10.2 for Desktop 新特性(一)

    ArcGIS 10.2 for Desktop是在10.1的成功基础上进行的改进,它的改进包括:性能提升.附加的安全性.40多个新的分析工具.3D功能提高.栅格增强.新的地理数据管理能力以及其它更多的 ...

  10. JS脚本加载与执行对性能的影响

    高性能JavaScript-JS脚本加载与执行对性能的影响 在web产品优化准则中,很重要的一条是针对js脚本的加载和执行方式的优化.本篇文章简单描述一下其中的优化准则. 1. 脚本加载优化 1.1 ...