CNN for Visual Recognition (02)
图像分类
参考:http://cs231n.github.io/classification/
图像分类(Image Classification),是给输入图像赋予一个已知类别标签。图像分类是计算机视觉(Computer Vision)问题中一个基本问题,也是很要的一个问题。诸如物体检测、图像分割等可以利用图像分类来解决。
图像分类问题的主要难点在以下几个方面:
- 视角差异(viewpoint variation):拍摄角度
- 比例差异(Scale variation):缩放比例
- 形变(Deformation):主要为非刚性形变(non-rigid deformation)
- 遮挡(Occlusion):局部遮挡
- 光照差异(Illumination condition):光线情况不同
- 背景噪声(Background clutter):背景与前景接近
- 类内差异(intra-class variance):类内差异大于类间差异

(ref: http://cs231n.github.io/assets/challenges.jpeg)
数据驱动的方法(data-driven approach):
从机器学习角度讲,训练数据(training data)为学习过程提供先验知识。
解决图像分类流程(pipeline):
- 输入(input):包括图像和类别标签;
- 学习(learning):学习分类器(classifier)或是模型(model)进而预测输入图像标签;
- 评价(evaluation):比较预测标签和实际标签,评价分类器(模型)的性能。
最邻近分类(Nearest Neighbor Classifier):
(只是为了能够直观了解图像分类问题)
根据已有数据及标签(training data),预测输入图像(input image)为其最邻近图像的标签。进一步扩展可为K邻近方法,K邻接相对更加常用。相对而言,kNN在特征维度较低的时候,能力比较强的。
对于kNN而言有两个问题不好确定:
第一个就是k值的选择。K值较小时,对噪声敏感;k值较大,会削弱对decision boundary附近样本的判别能力。最简单的方法就是交叉验证,在验证集尝试不同取值;还有一些参考文件中使用\sqrt(N),其中N是每一类中样本的平均数(很明显对数据量很大的情况不适用)。
第二个就是对距离量度(distance metric)的选择。比较常用的是L1和L2距离。但是对一些问题,需要进行距离量度学习(distance metric learning)。比较常用的学习方法有LMNN(Large Margin Nearest Neighbor),ITML(Information-Theoretic Metric Learning)
关于使用kNN的一个小节:
- 对特征做正规化(normalization),即零均值、单位方差;
- 特征维数很高时降维,如PCA等;
- 在训练集上划分验证集;
- 交叉验证不同的k值及距离量度;
- 时间开销过大时考虑Approximate Nearest Neighbor (FLANN)代替(以降低准确率为代价)。
延伸阅读:
A Few Useful Things to Know about Machine Learning,英文
机器学习那些事,中文
Recognizing and Learning Object Categories, ICCV2005的一个short course。
CNN for Visual Recognition (02)的更多相关文章
- CNN for Visual Recognition (01)
CS231n: Convolutional Neural Networks for Visual Recognitionhttp://vision.stanford.edu/teaching/cs23 ...
- CNN for Visual Recognition (assignment1_Q1)
参考:http://cs231n.github.io/assignment1/ Q1: k-Nearest Neighbor classifier (30 points) import numpy a ...
- 论文笔记之: Bilinear CNN Models for Fine-grained Visual Recognition
Bilinear CNN Models for Fine-grained Visual Recognition CVPR 2015 本文提出了一种双线性模型( bilinear models),一种识 ...
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...
- 【论文阅读】Deep Mixture of Diverse Experts for Large-Scale Visual Recognition
导读: 本文为论文<Deep Mixture of Diverse Experts for Large-Scale Visual Recognition>的阅读总结.目的是做大规模图像分类 ...
- 目标检测--Spatial pyramid pooling in deep convolutional networks for visual recognition(PAMI, 2015)
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangy ...
- Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zh ...
- Convolutional Neural Networks for Visual Recognition 1
Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型 ...
- 【CV论文阅读】+【搬运工】LocNet: Improving Localization Accuracy for Object Detection + A Theoretical analysis of feature pooling in Visual Recognition
论文的关注点在于如何提高bounding box的定位,使用的是概率的预测形式,模型的基础是region proposal.论文提出一个locNet的深度网络,不在依赖于回归方程.论文中提到locne ...
随机推荐
- Python编写网页爬虫爬取oj上的代码信息
OJ升级,代码可能会丢失. 所以要事先备份. 一開始傻傻的复制粘贴, 后来实在不能忍, 得益于大潇的启示和聪神的原始代码, 网页爬虫走起! 已经有段时间没看Python, 这次网页爬虫的原始代码是 p ...
- 使用微软 URL Rewrite Module 开启IIS伪静态
原文 使用微软 URL Rewrite Module 开启IIS伪静态 在IIS5和IIS6时代,我们使用URL REWRITING可实现URL重写,使得WEB程序实现伪静态,但默认情况下只能实现.A ...
- JavaScript语言基础知识11
JavaScript字符的比较. 在接下来的学习内容的开始,我们先来看一下alert()此功能,它是一个消息框. OK,接下来正式介绍代码: <HTML> <HEAD> < ...
- Hibernate实体映射配置(XML)简单三步完美配置
我们在使用Hibernate框架的时候,非常纠结的地方就是实体和表之间的映射,今天借助汤老师的思路写了小教程,以后配置不用纠结了! 第一步:写注释 格式为:?属性,表达的是本对象与?的?关系. 例:“ ...
- Hibernat之关系的处理多对多
第一步:编写两个pojo,比如一个学生表一个课程表 这里使用注解. 需要 课程表: package com.qcf.pox; import java.util.HashSet; import jav ...
- POJ 3390 Print Words in Lines(DP)
Print Words in Lines Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1624 Accepted: 864 D ...
- linux下C语言中的flock函数使用方法 .
表头文件 #include<sys/file.h> 定义函数 int flock(int fd,int operation); 函数说明 flock()会依參数operation所指 ...
- java 转成字符串 json 数组和迭代
当你需要转成一串一串的json 排列 .当内容和遍历它们. 首页进口 net.sf.json.JSONArray和net.sf.json.JSONObject 两个jar 包 String str = ...
- 页面中引入js的几种方法
通常大家最为熟悉的是一下两种方法: 在页面中直接写入<script type="text/javascript">js代码</script>. 在页面中引入 ...
- 命令行配置源和安装本地rpm包
因为Firefox的在写博客时提交代码会丢失缩进,所以打算安装Chrome来写博,还不错,学到了两条命令- [shell] sudo yum-config-manager --add-repo=htt ...