传送门

显然考虑 $dp$ ,发现从右往左和从左往右是一样的,所以只考虑一边就行

发现对于切的左右端点,选择的 $s0$ 一定要为左右端点的贝壳大小,不然这个端点不产生贡献还不如分开来单个贡献

所以设 $f[i]$ 表示当前把 $1$ 到 $i$ 的都切了,产生的最大贡献,设 $c[i]$ 表示位置 $i$ 及之前大小为 $s[i]$ 的柠檬个数,有转移:

$f[i]=f[j-1]+s[i](c[i]-c[j]+1)^2,j \in [1,i]$,并且要满足 $s[i]=s[j]$ ,发现是个斜率优化的式子,拆开来:

$f[i]=f[j-1]+s[i](c[i]^2-2c[i](c[j]-1)+(c[j]-1)^2)$,再拆,变成

$f[j-1]+s[i](c[j]-1)^2=2s[i]c[i](c[j]-1)+f[i]-s[i]c[i]^2$,因为转移都是在同一个大小之间转移,所以 $s[i]$ 可以看成常数

所以 $y=f[j-1]+s[i](c[j]-1)^2$,$k=2s[i]c[i]$,$x=c[j]-1$,$b=f[i]-s[i]c[i]^2$,对每种 $s$ 都维护一个凸包即可

显然对于同一个 $s$, $k,x$ 都单调递增,并且求 $max$ ,所以维护上凸包

插点时从右边插,更新 $f$ 时也切凸包右边,用 $vector$ 维护凸包即可

注意先加当前点再更新 $f$($j \in [1,i]$)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
typedef long long ll;
typedef long double ldb;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=2e5+,M=2e4+;
int n,s[N],c[N],cnt[M];
ll f[N];
struct Vec{//向量
ldb x,y;
Vec (ll a=,ll b=) { x=a,y=b; }
inline ldb operator * (const Vec &tmp) const {
return x*tmp.y-y*tmp.x;
}
};
struct Poi{//凸包点
ll f; int cj,s;
Poi (ll a=,int b=,int c=) { f=a,cj=b,s=c; }
inline ll calc(int i) { return f+1ll*s*(c[i]-cj+)*(c[i]-cj+); }
inline ll X() { return 1ll*s*(cj-); }
inline ll Y() { return f+1ll*s*(cj-)*(cj-); }
};
inline Vec operator - (Poi &A,Poi &B) {
return Vec( A.X()-B.X() , A.Y()-B.Y() );
}
vector <Poi> st[M];//每种s维护凸包
int main()
{
n=read();
for(int i=;i<=n;i++)
s[i]=read(),c[i]=++cnt[s[i]];
for(int i=;i<=n;i++)
{
Poi t(f[i-],c[i],s[i]); int len=st[s[i]].size()-;
while( len> && (st[s[i]][len]-st[s[i]][len-])*(t-st[s[i]][len-])>= ) st[s[i]].pop_back(),len--;
st[s[i]].push_back(t); len++;//先插入
while( len> && st[s[i]][len].calc(i) <= st[s[i]][len-].calc(i) ) st[s[i]].pop_back(),len--;
f[i]=st[s[i]][len].calc(i);//再更新
}
printf("%lld\n",f[n]);
return ;
}

P5504 [JSOI2011]柠檬的更多相关文章

  1. luogu P5504 [JSOI2011]柠檬

    bgm(雾) luogu 首先是那个区间的价值比较奇怪,如果推导后可以发现只有左右端点元素都是同一种\(s_x\)的区间才有可能贡献答案,并且价值为\(s_x(cnt(x)_r-cnt(x)_{l-1 ...

  2. bzoj4709: [Jsoi2011]柠檬 斜率优化

    题目链接 bzoj4709: [Jsoi2011]柠檬 题解 斜率优化 设 \(f[i]\) 表示前 \(i\)个数分成若干段的最大总价值. 对于分成的每一段,左端点的数.右端点的数.选择的数一定是相 ...

  3. 4709: [Jsoi2011]柠檬

    4709: [Jsoi2011]柠檬 https://www.lydsy.com/JudgeOnline/problem.php?id=4709 分析: 决策单调性+栈+二分. 首先挖掘性质:每个段选 ...

  4. 【BZOJ】4709: [Jsoi2011]柠檬

    4709: [Jsoi2011]柠檬 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 779  Solved: 310[Submit][Status][ ...

  5. 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈

    [BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...

  6. 【LG5504】[JSOI2011]柠檬

    [LG5504][JSOI2011]柠檬 题面 洛谷 题解 考虑\(dp\),令\(f_i\)表示\(dp\)到第\(i\)位且在第\(i\)位分段的最大值. 我们令题面中的\(s_i\)为\(a_i ...

  7. 笔记-[JSOI2011]柠檬

    笔记-[JSOI2011]柠檬 [JSOI2011]柠檬 \(f_i\) 表示到第 \(i\) 只贝壳最多可以换得的柠檬数. 令 \(c_i=\sum_{h=1}^i[s_h=s_i]\). \[\b ...

  8. bzoj4709 [jsoi2011]柠檬

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N  ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们 ...

  9. 【bzoj4709】[Jsoi2011]柠檬 斜率优化

    题目描述 给你一个长度为 $n$ 的序列,将其分成若干段,每段选择一个数,获得 $这个数\times 它在这段出现次数的平方$ 的价值.求最大总价值. $n\le 10^5$ . 输入 第 1 行:一 ...

随机推荐

  1. R语言-变量命名规则

    1.大原则:只有字母(区分大小写).数字.“_”(下划线).“.”(英文句号)可以出现. 2.数字.下划线不能开头. 3.英文句号开头不能紧接数字. 就这么简单!

  2. 【leetcode】1108. Defanging an IP Address

    题目如下: Given a valid (IPv4) IP address, return a defanged version of that IP address. A defanged IP a ...

  3. 全球DC主机交流

    全球DC主机交流https://www.globaldc.cn/ 全球DC主机交流论坛是一个综合性的国内服务器.国外服务器.高防清洗.硬件服务器交流论坛,主要为网友提供IP地址鉴定主机商,全球独立服务 ...

  4. 5-2 Django的路由层(urlconf) 2

    django2.0版的path 思考情况如下: urlpatterns = [ re_path('articles/(?P<year>[0-9]{4})/', year_archive), ...

  5. Dreamweaver cc新版本css单行显示

    新版本通用:(1)C:\Users\admin\Application Data\Adobe\Dreamweaver CC 2018\cloudpref\Adobe Dreamweaver CC 20 ...

  6. fengmiantu2

  7. .Net Core入门与.Net需要注意的地方

    1.编码注册 Encoding.RegisterProvider(CodePagesEncodingProvider.Instance); 否则抛出异常 'GB2312' is not a suppo ...

  8. React-Native 之 GD (十九)TabBarItem 逻辑完善 / 关闭筛选菜单滑动手势 / Navigator 掉帧卡顿问题处理

    1.TabBarItem 逻辑完善 那么为了更好的用户体验,我们这边还需要来处理一下点击 TabBarItem 的一下细节,那就是当用户点击 Item 时,可能只是单纯的想进行页面的 切换或者置顶操作 ...

  9. Oracle Flashback Transaction Query with Oracle Flashback Version Query

    Oracle Flashback Transaction Query with Oracle Flashback Version Query In this example, a database a ...

  10. Cannot refer to the non-final local variable user defined in an enclosing scope

    (1)首先该错误只会在 JDK 1.7 版本及其以前如果要在匿名内部类中报出,解决办法为在传入的参数前面增加final修饰,但如果在JDK 如果变更为1.8版本及其以后,该异常就不存在了. (2)如何 ...