2019牛客多校第一场E ABBA(DP)题解
链接:https://ac.nowcoder.com/acm/contest/881/E
来源:牛客网
ABBA
时间限制:C/C++ 2秒,其他语言4秒
空间限制:C/C++ 524288K,其他语言1048576K
64bit IO Format: %lld
题目描述
Bobo has a string of length 2(n + m) which consists of characters A and B. The string also has a fascinating property: it can be decomposed into (n + m) subsequences of length 2, and among the (n + m) subsequences n of them are AB while other m of them are BA.
Given n and m, find the number of possible strings modulo
(
10
9
+
7
)
(109+7).
输入描述:
The input consists of several test cases and is terminated by end-of-file.
Each test case contains two integers n and m.
0
≤
n
,
m
≤
10
3
0≤n,m≤103
- There are at most 2019 test cases, and at most 20 of them has
max
{
n
,
m
}
50
max{n,m}>50.
输出描述:
For each test case, print an integer which denotes the result.
示例1
输入
复制
1 2
1000 1000
0 0
输出
复制
13
436240410
1
题意:
问给你长度为2*(n+m)的字符串,由n+m个‘A'和’B'组成,要求有n个AB子序列,和m个BA子序列,这样的串有多少种 ?
思路:
先看一个合法串什么什么样的,因为子序列有n个AB,m个BA,那么显然前n个A必为AB的A,前m个B必为BA的B,因为如果我前n个A中有一个是BA的A,那么我们可以从更后面 随便找一个A给这个B用。
定义dp状态: dp[i][j] 为放了i个A,j个B,合法的状态数。
来看转移:
放A:
如果i < n 那么可以直接放这个A,理由如上。
如果i>=n 那么我们要确保 这个放的A能给前面的B当作BA中的A用,那么当前我们BA需要的A是min(j,m) 个
已经给了i-n个,故如果(i-n)<min(j,m) 还可以继续放A
B 同理:
如果j< m 直接放这个B
如果j > = m ,那么我们要确保 放这个B能给前面的一个A当作AB中的B用,那么我们AB需要的B是 min(i,n )个
已经放了 j-m 个,如果(j-m) <min(i,n) 就可以继续放这个B
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2) { ans = ans * a % MOD; } a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
ll dp[3000][2005];
const ll mod = 1e9 + 7;
int n, m;
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
while (cin >> n >> m) {
repd(i, 0, n + m) {
repd(j, 0, n + m) {
dp[i][j] = 0;
}
}
dp[0][0] = 1;
repd(i, 0, n + m) {
repd(j, 0, m + n) {
if (i < n || i - n < j) {
dp[i + 1][j] += dp[i][j];
dp[i + 1][j] %= mod;
}
if (j < m || (j - m) < i) {
dp[i][j + 1] += dp[i][j];
dp[i][j + 1] %= mod;
}
}
}
cout<<dp[n+m][n+m]<<endl;
}
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
2019牛客多校第一场E ABBA(DP)题解的更多相关文章
- 2019牛客多校第一场E ABBA dp
ABBA dp 题意 给出2(N+M)个AB字符,问能构造出N个AB子序列和M个BA子序列组成的2*(n+m)的序列种类有多少 思路 碰到计数构造类的题目,首先要去找到判断合法性的条件,即什么情况下合 ...
- 2019牛客多校第一场 E-ABBA(dp)
ABBA 题目传送门 解题思路 用dp[i][j]来表示前i+j个字符中,有i个A和j个B的合法情况个数.我们可以让前n个A作为AB的A,因为如果我们用后面的A作为AB的A,我们一定也可以让前面的A对 ...
- 2019牛客多校第一场E ABBA 贪心 + DP
题意:问有多少个有(n + m)个A和(n + m)个B的字符串可以凑出n个AB和m个BA. 思路:首先贪心的发现,如果从前往后扫,遇到了一个A,优先把它看成AB的A,B同理.这个贪心策略用邻项交换很 ...
- 2019 牛客多校第一场 E ABBA
题目链接:https://ac.nowcoder.com/acm/contest/881/E 题目大意 问有多少个由 (n + m) 个 ‘A’ 和 (n + m) 个 ‘B’,组成的字符串能被分割成 ...
- 2019牛客多校第一场 I Points Division(动态规划+线段树)
2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...
- 2019牛客多校第一场A-Equivalent Prefixes
Equivalent Prefixes 传送门 解题思路 先用单调栈求出两个序列中每一个数左边第一个小于自己的数的下标, 存入a[], b[].然后按照1~n的顺序循环,比较 a[i]和b[i]是否相 ...
- 2019牛客多校第一场 A.Equivalent Prefixes
题目描述 Two arrays u and v each with m distinct elements are called equivalent if and only if RMQ(u,l,r ...
- 2019 牛客多校第一场 D Parity of Tuples
题目链接:https://ac.nowcoder.com/acm/contest/881/D 看此博客之前请先参阅吕凯飞的论文<集合幂级数的性质与应用及其快速算法>,论文中很多符号会被本文 ...
- 【2019牛客多校第一场】XOR
题意: 给你一个集合A,里边有n个正整数,对于所有A的.满足集合内元素异或和为0的子集S,问你∑|S| n<=1e5,元素<=1e18 首先可以转化问题,不求∑|S|,而是求每个元素属于子 ...
随机推荐
- Python的环境的搭建
下载Python软件安装,配置环境变量 给Eclipse安装pydev插件即可
- Jmeter(十三) JDBC Request
Jmeter中取样器(Sampler)是与服务器进行交互的单元.一个取样器通常进行三部分的工作:向服务器发送请求,记录服务器的响应数据和记录响应时间信息 有时候工作中我们需要对数据库发起请求或者对数据 ...
- Appium+python--元素定位uiautomatorviewer
一.启动uiautomatorviewer.bat 1. 打开uiautomatorviewer软件,如下图所示,本机路径:E:\downloads\android-sdk_r23.0.2-windo ...
- 阶段3 2.Spring_10.Spring中事务控制_5 spring事务控制的代码准备
创建一个工程,只搭建环境不做配置.等配置的时候把这个项目相关的代码再复制到新项目里面 jar包的打包方式 导入包 事务控制也是基于AOP的.所以这里导入aspectjweaver 复制jdbcTemp ...
- 四十一:数据库之SQLAlchemy之limlt、、slice、offset及切片
一:limit:限制每次查询的时候查询数据的条数二:slice:查一个区间的数据,slice(起,止)三:offset:限制查找数据的时候过滤掉前面多少条四:切片:对query对象切实获取想要的数据 ...
- CSP 之dvwa
csp的本质是白名单,明确告诉浏览器哪些外部资源可以使用 请求头:[][x] Content-Security-Policy: script-src 'self'; object-src 'non ...
- 【VS开发】【图像处理】双边滤波器bilateral filter
目录(?)[-] 简介 原理 代码实现 1 Spatial Weight 2 Similarity Weight 3 Color Filtering 在SSAO中的使用 1. 简介 图像平滑是一个重要 ...
- python 并发编程 异步IO模型
异步IO(Asynchronous I/O) Linux下的asynchronous IO其实用得不多,从内核2.6版本才开始引入.先看一下它的流程: 用户进程发起read操作之后,立刻就可以开始去做 ...
- 项目附 - 云盘项目-分析echo.c
分析FastCGI源码目录下example中echo.c代码: /* * echo.c -- * * Produce a page containing all FastCGI inputs * * ...
- 小记---------网页采集之Jsoup
Jsoup是一款Java解析器,相当于httpClient解析器 功能:①:从一个URL,文件或字符串中解析HTML ②:使用DOM或CSS选择器来查找.取出数据 ...