参考:https://blog.csdn.net/Byron309/article/details/77716127     ----    https://blog.csdn.net/xbinworld/article/details/44276389

参考:https://blog.csdn.net/bitcarmanlee/article/details/51589143

1、首先介绍线性回归模型(多元)原理,模型可以表示为:

损失函数可以表示为:

这里的 1/2m 主要还是出于方便计算的考虑,在求解最小二乘的时并不考虑在内;

最小二乘法可得到最优解:

监督学习有2大基本策略,经验风险最小化和结构风险最小化;

经验风险最小化策略为求解最优化问题,线性回归中的求解损失函数最小化问题即经验风险最小化,经验风险最小化定义:

求解最优化问题可以转化为:

结构化风险最小化是为了防止过拟合现象提出的策略;结构风险最小化等价于正则化,在经验风险上加上表示模型复杂度的正则化项,定义如下:

这里讨论的岭回归和Lasso,也就是结构风险最小化的思想,在线性回归的基础上,加上模型复杂度的约束。

其中几种范数(norm)的定义如下:

岭回归的损失函数表示:

观察这条式子很容易的可以联想到正则化项为L2范数,也即L2范数+损失函数其实也可以称为岭回归;

最小二乘求解参数:

Lasso的损失函数表示:

由于Lasso损失函数的导数在0点不可导,因此不能直接利用梯度下降求解;引入subgradient的概念,考虑简单函数,即x只有1维的情况下,即简单函数表示:

首先定义|x|在0点的梯度,即subgradient,

函数在某一点的导数可以看成函数在这一点上的切线。那么在原点,可以在实线下方找到无数条切线,形成曲线族;我们把这些切线斜率的范围定义为这点的subgradient;也即|x|在0点的导数是在-1到1范围内的任意值;

所以可以得到h(x)的导数:

在x=0的时候,按照上面的subgradient可以得到,x=0时斜率的区间在x>0和x<0之间;当-b<2a<b时,在x=0时,f'(x)能取到值0;也就是f(x)到达极值点,这也可以解释lasso下的解会稀疏的原因:在b的取值在一定范围内时,只要x为0,f'(x)就恒为0; (这句话本人不是特别理解)(先存疑),

有关subgradient的解释:https://blog.csdn.net/lansatiankongxxc/article/details/46386341

当x拓展到多维向量时,导数方向的变化范围更大,问题更为复杂;常见解决方法如下:

1、贪心算法;每次先找到与目标最相关的feature,固定其他系数,优化这个feature的系数,具体求导也用到subgradient;代表算法有LARS,feature-sign search等;

2、逐一优化;每次固定其他的维度,选择一个维度进行优化;因为只有一个方向有变化,所以转化为简单的subgradient问题,反复迭代所有维度,达到收敛;代表算法有coordinate descent,block coordinate descent等;

Lasso和ridge的几何意义如下图:

红色椭圆和蓝色的区域的切点就是目标函数的最优解;可以看到,如果是圆,很容易切到圆周的任意一点,但是很难切到坐标轴上。则在该纬度上取值不为0,因此没有系数;如果是菱形或多边形,则很容易切到坐标轴上,使部分维度特征权重为0,因此很容易产生稀疏的结果;

岭回归、lasso的更多相关文章

  1. 岭回归&Lasso回归

    转自:https://blog.csdn.net/dang_boy/article/details/78504258 https://www.cnblogs.com/Belter/p/8536939. ...

  2. 线性回归——lasso回归和岭回归(ridge regression)

    目录 线性回归--最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean squ ...

  3. 多重共线性的解决方法之——岭回归与LASSO

          多元线性回归模型 的最小二乘估计结果为 如果存在较强的共线性,即 中各列向量之间存在较强的相关性,会导致的从而引起对角线上的 值很大 并且不一样的样本也会导致参数估计值变化非常大.即参数估 ...

  4. 多元线性回归模型的特征压缩:岭回归和Lasso回归

    多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数 ...

  5. 【机器学习】正则化的线性回归 —— 岭回归与Lasso回归

    注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念 ...

  6. 机器学习--Lasso回归和岭回归

    之前我们介绍了多元线性回归的原理, 又通过一个案例对多元线性回归模型进一步了解, 其中谈到自变量之间存在高度相关, 容易产生多重共线性问题, 对于多重共线性问题的解决方法有: 删除自变量, 改变数据形 ...

  7. 通俗易懂--岭回归(L2)、lasso回归(L1)、ElasticNet讲解(算法+案例)

    1.L2正则化(岭回归) 1.1问题 想要理解什么是正则化,首先我们先来了解上图的方程式.当训练的特征和数据很少时,往往会造成欠拟合的情况,对应的是左边的坐标:而我们想要达到的目的往往是中间的坐标,适 ...

  8. 岭回归和Lasso回归以及norm1和norm2

    norm代表的是距离,两个向量的距离:下图代表的就是p-norm,其实是对向量里面元素的一种运算: 最简单的距离计算(规范)是欧式距离(Euclidean distance),两点间距离是如下来算的, ...

  9. 吴裕雄 数据挖掘与分析案例实战(7)——岭回归与LASSO回归模型

    # 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import mod ...

  10. 岭回归和lasso回归(转)

    回归和分类是机器学习算法所要解决的两个主要问题.分类大家都知道,模型的输出值是离散值,对应着相应的类别,通常的简单分类问题模型输出值是二值的,也就是二分类问题.但是回归就稍微复杂一些,回归模型的输出值 ...

随机推荐

  1. python学习笔记:(八)条件语句

    if语句,python中if语句的一般形式如下: conditon1为真,执行statement_block_1 condition1为假,判断conition_2,如果condition_2为真,执 ...

  2. python3 基本数据类型_1

    不得已,要学习python3了,之前了解到py2与py3有很大不同,不过学起来才能感觉到,比如print. 不过,同样的代码,可以使用py3,py2执行,结果也相似,大家可以看看. 大概因为初学,还未 ...

  3. ssh远程连接linux服务器并执行命令

    详细方法: SSHClient中的方法 参数和参数说明 connect(实现ssh连接和校验) hostname:目标主机地址 port:主机端口 username:校验的用户名 password:登 ...

  4. jeecg项目将workbook 的Excel流添加到zip压缩包里导出

    1.直接献出代码 Map<String,List<ConfidentialInformation>> typeMap = new HashMap<>(); try ...

  5. 20191127 Spring Boot官方文档学习(4.11)

    4.11.使用NoSQL技术 Spring Data提供了其他项目来帮助您访问各种NoSQL技术,包括: Redis MongoDB Neo4J Solr Elasticsearch Cassandr ...

  6. c++ k^1

    如果k是偶数,则使k=k+1:若k是奇数,则使k=k-1.

  7. 2019上海网络赛B题(差分 + 离散化 or 差分 + 思维)

    这题.....队里都没怎么训练差分,导致败北...写了一堆线段树嘤嘤嘤,到最后也是超时,比赛结束后看到了差分的思想于是就去学了一手. 其实了解差分思想的一眼就能看出来是差分了.但是如果对n差分的话很明 ...

  8. C++中构造函数的手动和自动调用方式

    1,对象的构造通过构造函数来完成,和类名相同且没有返回值,这个时候只有参   数一个特性,构造函数可以自定义参数,这个参数一般而言就是对类进行初始  化来使用的:带有参数的构造函数的意义在于可以使得每 ...

  9. Text Autosizer&&解决移动端网页文本字体怪异增大问题

    在做移动端页面时,有时你设置了字体大小,有的部分即使设置了行内样式也不生效,而有些显示正常,这个特性就是Text Autosizer在搞鬼. 以下是解决方案: ①给元素设置 -webkit-text- ...

  10. 各种IE(IE6-IE10)兼容问题一行代码搞定

    x-ua-compatible 用来指定IE浏览器解析编译页面的model x-ua-compatible 头标签大小写不敏感,必须用在 head 中,必须在除 title 外的其他 meta 之前使 ...