岭回归、lasso
参考:https://blog.csdn.net/Byron309/article/details/77716127 ---- https://blog.csdn.net/xbinworld/article/details/44276389
参考:https://blog.csdn.net/bitcarmanlee/article/details/51589143
1、首先介绍线性回归模型(多元)原理,模型可以表示为:

损失函数可以表示为:

这里的 1/2m 主要还是出于方便计算的考虑,在求解最小二乘的时并不考虑在内;
最小二乘法可得到最优解:

监督学习有2大基本策略,经验风险最小化和结构风险最小化;
经验风险最小化策略为求解最优化问题,线性回归中的求解损失函数最小化问题即经验风险最小化,经验风险最小化定义:

求解最优化问题可以转化为:

结构化风险最小化是为了防止过拟合现象提出的策略;结构风险最小化等价于正则化,在经验风险上加上表示模型复杂度的正则化项,定义如下:

这里讨论的岭回归和Lasso,也就是结构风险最小化的思想,在线性回归的基础上,加上模型复杂度的约束。
其中几种范数(norm)的定义如下:

岭回归的损失函数表示:

观察这条式子很容易的可以联想到正则化项为L2范数,也即L2范数+损失函数其实也可以称为岭回归;
最小二乘求解参数:

Lasso的损失函数表示:

由于Lasso损失函数的导数在0点不可导,因此不能直接利用梯度下降求解;引入subgradient的概念,考虑简单函数,即x只有1维的情况下,即简单函数表示:

首先定义|x|在0点的梯度,即subgradient,

函数在某一点的导数可以看成函数在这一点上的切线。那么在原点,可以在实线下方找到无数条切线,形成曲线族;我们把这些切线斜率的范围定义为这点的subgradient;也即|x|在0点的导数是在-1到1范围内的任意值;
所以可以得到h(x)的导数:

在x=0的时候,按照上面的subgradient可以得到,x=0时斜率的区间在x>0和x<0之间;当-b<2a<b时,在x=0时,f'(x)能取到值0;也就是f(x)到达极值点,这也可以解释lasso下的解会稀疏的原因:在b的取值在一定范围内时,只要x为0,f'(x)就恒为0; (这句话本人不是特别理解)(先存疑),
有关subgradient的解释:https://blog.csdn.net/lansatiankongxxc/article/details/46386341
当x拓展到多维向量时,导数方向的变化范围更大,问题更为复杂;常见解决方法如下:
1、贪心算法;每次先找到与目标最相关的feature,固定其他系数,优化这个feature的系数,具体求导也用到subgradient;代表算法有LARS,feature-sign search等;
2、逐一优化;每次固定其他的维度,选择一个维度进行优化;因为只有一个方向有变化,所以转化为简单的subgradient问题,反复迭代所有维度,达到收敛;代表算法有coordinate descent,block coordinate descent等;
Lasso和ridge的几何意义如下图:

红色椭圆和蓝色的区域的切点就是目标函数的最优解;可以看到,如果是圆,很容易切到圆周的任意一点,但是很难切到坐标轴上。则在该纬度上取值不为0,因此没有系数;如果是菱形或多边形,则很容易切到坐标轴上,使部分维度特征权重为0,因此很容易产生稀疏的结果;
岭回归、lasso的更多相关文章
- 岭回归&Lasso回归
转自:https://blog.csdn.net/dang_boy/article/details/78504258 https://www.cnblogs.com/Belter/p/8536939. ...
- 线性回归——lasso回归和岭回归(ridge regression)
目录 线性回归--最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean squ ...
- 多重共线性的解决方法之——岭回归与LASSO
多元线性回归模型 的最小二乘估计结果为 如果存在较强的共线性,即 中各列向量之间存在较强的相关性,会导致的从而引起对角线上的 值很大 并且不一样的样本也会导致参数估计值变化非常大.即参数估 ...
- 多元线性回归模型的特征压缩:岭回归和Lasso回归
多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数 ...
- 【机器学习】正则化的线性回归 —— 岭回归与Lasso回归
注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念 ...
- 机器学习--Lasso回归和岭回归
之前我们介绍了多元线性回归的原理, 又通过一个案例对多元线性回归模型进一步了解, 其中谈到自变量之间存在高度相关, 容易产生多重共线性问题, 对于多重共线性问题的解决方法有: 删除自变量, 改变数据形 ...
- 通俗易懂--岭回归(L2)、lasso回归(L1)、ElasticNet讲解(算法+案例)
1.L2正则化(岭回归) 1.1问题 想要理解什么是正则化,首先我们先来了解上图的方程式.当训练的特征和数据很少时,往往会造成欠拟合的情况,对应的是左边的坐标:而我们想要达到的目的往往是中间的坐标,适 ...
- 岭回归和Lasso回归以及norm1和norm2
norm代表的是距离,两个向量的距离:下图代表的就是p-norm,其实是对向量里面元素的一种运算: 最简单的距离计算(规范)是欧式距离(Euclidean distance),两点间距离是如下来算的, ...
- 吴裕雄 数据挖掘与分析案例实战(7)——岭回归与LASSO回归模型
# 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import mod ...
- 岭回归和lasso回归(转)
回归和分类是机器学习算法所要解决的两个主要问题.分类大家都知道,模型的输出值是离散值,对应着相应的类别,通常的简单分类问题模型输出值是二值的,也就是二分类问题.但是回归就稍微复杂一些,回归模型的输出值 ...
随机推荐
- hibernate中get和load区别
在日常开发中,获取数据时必不可少的,这样就要用到get和load方法来实现了.下面简单说一下get和load的区别. 1.返回值不同 使用get方法检索数据时,没有该数据返回值为null. 而使用lo ...
- 阶段3 1.Mybatis_09.Mybatis的多表操作_3 完成account的一对一操作-通过写account的子类方式查询
先把多表查询的sql语句写出来 想要显示的字段 创建一个AccountUser类 继承Account.这样它就会从父类上继承一些信息 这里只需要定义username和address就可以了 .然后生成 ...
- 【疑难杂症】Firefox 火狐浏览器 抓不到本地数据包
日期:2019-05-17 23:28:11 介绍:火狐浏览器,如何才能够抓到本地(127.0.0.1)的数据包? 0x01.问题描述 在 Firefox 上安装了证书,浏览器也可以正常抓取互联网的 ...
- C—LINQ小结
LINQ代表语言集成查询(Language-Integrated Query),它包括用于从数据源检索信息的一组功能.数据检索是许多程序的重要组成功能. 简介:System.Linq; var num ...
- 中国MOOC_零基础学Java语言_第7周 函数_2完数
2 完数(5分) 题目内容: 一个正整数的因子是所有可以整除它的正整数.而一个数如果恰好等于除它本身外的因子之和,这个数就称为完数.例如6=1+2+3(6的因子是1,2,3). 现在,你要写一个程序, ...
- Matlab——程序设计
M文件 我们之前所做的运算————> 算式不太长,或想以交谈式方式进行运算 如果算式很长或是需要一再执行的算式————> 采用M文件的方式 [将指令及算式写成巨集程式然后储存成一个特别的文 ...
- mysql中关于 like ,not like 的用法时不能显示空值的数据(空值不参与判断,直接过滤空值)
一般在项目中用法是(这种没办法显示空值的数据): select * from 表 where 字段 like %aaa%; 解决空值不显示(除了显示的数据外,空值数据也可以显示): select * ...
- 5G的科普
5G的科普 1. 通信起源公式 2. 5G在有线与无线的应用 主要在无线上的突破 因为有线也就是(电缆,光纤,双绞线)这些传输介质,特别是光纤,以及完全达到我们平时通信所需求的速率 那么瓶颈在哪?短板 ...
- CentOS7 安装dotnet sdk 2.1.401 的简单办法
1. 下载 linux版本的tar包 路径为: https://dotnet.microsoft.com/download/thank-you/dotnet-sdk-2.1.401-linux-x64 ...
- [19/06/04-星期二] HTML基础_实体(转义字符)、图片标签(img)、元标签(meta)、语法规范、内联框架(iframe)、超链接
一.实体(转义字符) 在HTML中,一些诸如<.> 就是普通的小于号和大于号不能直接使用,因为浏览可能会把它当成一个标签去解析,所以需要一些特殊字符去表示这些特殊字符, 这些字符我们称他们 ...