Kruskal最小生成树算法的概略描述:
1 T=Φ;
2 while(T的边少于n-1条) {
3 从E中选取一条最小成本的边(v,w);
4 从E中删去(v,w);
5 if((v,w)在T中不生成环) {
6 将(v,w)加到T中;
7 else{舍弃(v,w);}
8 };//if
9 }//for

  为了有效地执行第5和第6步,G中的结点的组合方式应该是易于确定结点v和w是否已由早先选择的边所连通的那种。在已连通的情况下,则将边(v,w)舍弃;若不连通,则把(v,w) 加人到T。一种可能的组合方法是把T的同一连通分图中所有结点放到一个集合中(T的各个连通分图都是树)。那么,T中的两个结点是连通的,当且仅当它们在同一个集合中。例如,当要考虑边(2,6)时,这些集合就是{l,2},{3,4,6}和{5}。结点2和6在不同的集合中,因此这些集合被合并成为{1,2,3,4,6}和{5}。要考虑的下一条边是(1,4)。由于结点1和4在同一个集合中,因此该边被舍弃,边(3,5)连结不同集合中的结点,并且产生最终的生成树。使用集合表示和Union和Find算法,可以在几乎是线性的时间内有效地实现第5和第6行。因此,计算时间由第3行和第4行的时间所确定,在最坏情况下第3和第4行的计算时间是О(eloge)。

  举个例子:

Kruskal算法
line void Kruskal (E,COST[],n,T,minCOST) {
//G有n个结点,E是G的边集。COST(u,v)是边(u,v)的成本。
//T是最小成本生成树的边集,minCOST是它的成本

l float minCOST,COST[n][n];
int Parent[n],T[n-][],n
以边成本为元素构造一个min一堆; Parent=l; //每个结点都在不同的集合中
i=minCOST= ;
while(i<n-l) and (堆非空) do
从堆中删去最小成本边(u,v).并重新构造堆
j=Find[u];k=Find[v] ;
if(j!=k) { i=i+;
T[i,l]=u;T(i,)=v;
minCOST = minCOST + COST(u,v);
union(j,k)
}if
}//while
if(i!=n-l) { print(’no spanning tree’)};//if
return T;
}// Kruskal

引理 设T是无向连通图G的一棵生成树。对于任一条边e∈E(G),但不属于E(T),有:①若将e加人到T,则生成一个唯一的环;②从E(T) ∪ {e}中去掉这环中的任意一条边后,剩        余的边构成G的一棵树。

最小生成树------Kruskal算法的更多相关文章

  1. 【转】最小生成树——Kruskal算法

    [转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...

  2. 最小生成树——kruskal算法

    kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...

  3. 最小生成树Kruskal算法

    Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1 ...

  4. 求最小生成树——Kruskal算法

    给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...

  5. 最小生成树 kruskal算法&prim算法

    (先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...

  6. 算法实践--最小生成树(Kruskal算法)

    什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树 ...

  7. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

  8. 数据结构之最小生成树Kruskal算法

    1. 克鲁斯卡算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个 ...

  9. 数据结构:最小生成树--Kruskal算法

    Kruskal算法 Kruskal算法 求解最小生成树的还有一种常见算法是Kruskal算法.它比Prim算法更直观.从直观上看,Kruskal算法的做法是:每次都从剩余边中选取权值最小的,当然,这条 ...

随机推荐

  1. 解决js获取数据跨域问题,jsonP

    网上说了一些jsonp的示例,感觉都没用,最后研究了一下,调用腾讯的一个api.最后要加output=jsonp&callback=?这个,比较适用. var url = "http ...

  2. NOIP2009 最优贸易

    3. 最优贸易 (trade.pas/c/cpp) [问题描述] C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间 多只有一条道路直接相连.这 m 条道 ...

  3. 在ubuntu中启用ftp服务

    Vsftpd vsftpd,ftp服务端,本文转自http://wiki.ubuntu.org.cn/Vsftpd 目录 [隐藏] 1 stand alone和super daemon 2 安装 3 ...

  4. highcharts图表的图例legend怎么改变显示位置

    一.将图例Legend放于图表右侧1.设置chart的marginRight属性值:chart: { marginRight: 120}2.设置legend图例属性值如下 legend: { alig ...

  5. 教程-Delphi各版本与工具下载地址

    1.Delphi 7.0 下载地址:http://www.skycn.com/soft/2121.html 注册码:(正在用的没有问题)V8S3-KM82KQ-XN8JQK-EPS33EA-GZK汉化 ...

  6. MBProgressHUD not showing

    In my app, I am loading a resource heavy view that takes about 1 to 2 seconds to load. So I am loadi ...

  7. Java任务调度

    最近项目要用到任务调度的相关知识,昨天信心满满的去官网学习,结果被坑个半死,我用的最新版的quartz,文档里说是兼容所有版本,但是代码连编译都报错,无奈只好从网上找资料,摸着石头过河总算有点眉目,在 ...

  8. 好的git教程

    1.GitHub使用教程for VS2012 http://www.cnblogs.com/yc-755909659/p/3753355.html

  9. JavaScript 要点(十四)HTML DOM 元素(节点)

    A.创建新的 HTML 元素 如需向 HTML DOM 添加新元素,必须首先创建该元素(元素节点),然后向一个已存在的元素追加该元素. <div id="div1"> ...

  10. linux系统基础(一)

    Linux简介与安装Unix ;windows; linux; apple(mac) linux=kernel (内核)=OSlinux全是文件============================ ...