Description
There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

Input
The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

Output
There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

Sample Input

5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20

Sample Output

1 3 5 2

题目大意:给你一个无向图,要你求最小环,并输出路径

用floyd求最短路时顺便求最小环

floyd主程序

 for k:= to n do
for i:= to n do
for j:= to n do
f[i,j]:=min(f[i,j],f[i,k]+f[k,j]);

然后我们可以在里面加一点东西

 for k:= to n do
begin
for i:= to k- do
for j:= to i- do
minc:=min(minc,f[i,j]+g[i,k]+g[k,j]);
for i:= to n do
for j:= to n do
f[i,j]:=min(f[i,j],f[i,k]+f[k,j]);
end;

g存的是原图信息

因为当k枚举到a时,最短路除了两端点外,都只能经过编号小于a的点

在最小环中,一定有一个编号最大的点,而且只有一个(废话......)

设这个点编号为b,当k枚举到b时,i,j枚举到b在环上相邻的两点时,f[i,j]存的是i,j之间不通过大于b的点的最短路,这当然就是最小环了

 const
maxn=;
var
f,g,p:array[..maxn,..maxn]of longint;
path:array[..maxn]of longint;
ans,tot,n,m:longint; procedure init;
var
i,x,y,z:longint;
begin
read(n,m);
fillchar(g,sizeof(g),);
for i:= to m do
begin
read(x,y,z);
if g[x,y]>z then
begin
g[x,y]:=z;
g[y,x]:=z;
end;
end;
f:=g;
end; procedure get(i,j:longint);
begin
if p[i,j]<> then
begin
get(i,p[i,j]);
get(p[i,j],j);
exit;
end;
inc(tot);
path[tot]:=j;
end; procedure work;
var
i,j,k:longint;
begin
ans:=g[,];
for k:= to n do
begin
for i:= to k- do
for j:= to i- do
if ans>f[i,j]+g[i,k]+g[k,j] then
begin
ans:=f[i,j]+g[i,k]+g[k,j];
tot:=;
inc(tot);
path[tot]:=i;
get(i,j);
inc(tot);
path[tot]:=k;
end;
for i:= to n do
for j:= to n do
if f[i,j]>f[i,k]+f[k,j] then
begin
p[i,j]:=k;
f[i,j]:=f[i,k]+f[k,j];
end;
end;
if ans=g[,] then write('No solution.')
else
for i:= to tot do
write(path[i],' ');
end; begin
init;
work;
end.

POJ1734 - Sightseeing trip的更多相关文章

  1. poj1734 Sightseeing trip【最小环】

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:8588   Accepted:3224   ...

  2. poj1734 Sightseeing trip(Floyd求无向图最小环)

    #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...

  3. poj1734 Sightseeing trip[最小环]

    一个最小环裸题.最小环的两种求法dijkstra和Floyd直接参见这里我就是从这里学的,不想写了. 注意这里最重要的一个点是利用了Floyd的dp过程中路径上点不超过$k$这一性质,来枚举环上最大编 ...

  4. POJ1734 Sightseeing trip (Floyd求最小环)

    学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...

  5. 「POJ1734」Sightseeing trip

    「POJ1734」Sightseeing trip 传送门 这题就是要我们求一个最小环并且按顺序输出一组解. 考虑 \(O(n^3)\) 地用 \(\text{Floyd}\) 求最小环: 考虑 \( ...

  6. 【poj1734】Sightseeing trip

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8520   Accepted: 3200 ...

  7. URAL 1004 Sightseeing Trip(最小环)

    Sightseeing Trip Time limit: 0.5 secondMemory limit: 64 MB There is a travel agency in Adelton town ...

  8. 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd

    题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...

  9. poj 1734 Sightseeing trip判断最短长度的环

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5590   Accepted: 2151 ...

随机推荐

  1. 【转】六年软件测试感悟-从博彦到VMware

    不知不觉已经从事软件测试六年了,2006毕业到进入外包公司外包给微软做软件测试, 到现在加入著名的外企.六年的时间过得真快. 长期的测试工作也让我对软件测试有了比较深入的认识.但是我至今还是一个底层的 ...

  2. 实现类似 QQ音乐网页版 的单页面总结

    最近需要对创业团队的网站进行改版,而我负责前端设计和实现. 下面是一些总结与体会: 当设计完成之前,我就跟和我配合的Java 后台说用iframe实现,结果说麻烦不肯,到最后突然对我说还是用ifram ...

  3. 需要MARK一下,奇怪的ANDROID SDK自带的APK加密功能的问题

    花了两天时间,各种调试APP,发现问题不在于代码. 在于用了SDK里的加密,导致运行其中一个多线程中的ACTIVITY, 就会黑屏,返回按钮也没用. 发现这个问题的思路是因为,我发现连手机直接调试,一 ...

  4. Android 中的图像特效(Matrix)

    以前在线性代数中学习了矩阵,对矩阵的基本运算有一些了解,现在在Android中有一个Matrix类,它的中文意思就是矩阵.Matrix主要是用于图像的缩放.平移.旋转.扭曲等操作.图像处理,主要用到的 ...

  5. money 转换成 varchar

    Sql :cast(sum(colname) as varchar) 或者 convert(varchar,sum(colname)) ),sum(colname))

  6. DOS批处理命令-goto命令

    goto是一个流程控制语句 rem goto语句是一个大家都不怎么喜欢的语句,因为他的随意性太强,导致可维护性大大的降低. 语法: goto [lable]   [lable]是bat程序中任意定义的 ...

  7. 如何查看JDK是64bit还是32bit

    在eclipse或MyEclipse中创建一个Java Project并运行如下代码: public class Test { public static void main(String[] arg ...

  8. IOS 异步GET方法请求

    1.添加协议NSURLConnectionDelegate 2.引入头文件“NSString+URLEncoding”,用来处理URL进行编码. 3.引入头文件“NSNumber+Message”,用 ...

  9. JavaScript最佳实践:可维护性

    代码约定 一.可读性 代码缩进 包含注释 二.变量和函数命名 变量名应为名词如car或person 函数名应该以动词开始,如getName().返回布尔类型值的函数一般以is开头,如isEnable( ...

  10. JSON对象(自定义对象)

    JSON对象(自定义对象) 1.什么是JSON对象 JSON对象是属性的无序集合,在内存中也表现为一段连续的内存地址(堆内存) 1)JSON对象是属性的集合 2)这个集合是没有任何顺序的 2.JSON ...