POJ1734 - Sightseeing trip
Description
There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.
In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.
Input
The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).
Output
There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.
Sample Input
5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20
Sample Output
1 3 5 2
题目大意:给你一个无向图,要你求最小环,并输出路径
用floyd求最短路时顺便求最小环
floyd主程序
for k:= to n do
for i:= to n do
for j:= to n do
f[i,j]:=min(f[i,j],f[i,k]+f[k,j]);
然后我们可以在里面加一点东西
for k:= to n do
begin
for i:= to k- do
for j:= to i- do
minc:=min(minc,f[i,j]+g[i,k]+g[k,j]);
for i:= to n do
for j:= to n do
f[i,j]:=min(f[i,j],f[i,k]+f[k,j]);
end;
g存的是原图信息
因为当k枚举到a时,最短路除了两端点外,都只能经过编号小于a的点
在最小环中,一定有一个编号最大的点,而且只有一个(废话......)
设这个点编号为b,当k枚举到b时,i,j枚举到b在环上相邻的两点时,f[i,j]存的是i,j之间不通过大于b的点的最短路,这当然就是最小环了
const
maxn=;
var
f,g,p:array[..maxn,..maxn]of longint;
path:array[..maxn]of longint;
ans,tot,n,m:longint; procedure init;
var
i,x,y,z:longint;
begin
read(n,m);
fillchar(g,sizeof(g),);
for i:= to m do
begin
read(x,y,z);
if g[x,y]>z then
begin
g[x,y]:=z;
g[y,x]:=z;
end;
end;
f:=g;
end; procedure get(i,j:longint);
begin
if p[i,j]<> then
begin
get(i,p[i,j]);
get(p[i,j],j);
exit;
end;
inc(tot);
path[tot]:=j;
end; procedure work;
var
i,j,k:longint;
begin
ans:=g[,];
for k:= to n do
begin
for i:= to k- do
for j:= to i- do
if ans>f[i,j]+g[i,k]+g[k,j] then
begin
ans:=f[i,j]+g[i,k]+g[k,j];
tot:=;
inc(tot);
path[tot]:=i;
get(i,j);
inc(tot);
path[tot]:=k;
end;
for i:= to n do
for j:= to n do
if f[i,j]>f[i,k]+f[k,j] then
begin
p[i,j]:=k;
f[i,j]:=f[i,k]+f[k,j];
end;
end;
if ans=g[,] then write('No solution.')
else
for i:= to tot do
write(path[i],' ');
end; begin
init;
work;
end.
POJ1734 - Sightseeing trip的更多相关文章
- poj1734 Sightseeing trip【最小环】
Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions:8588 Accepted:3224 ...
- poj1734 Sightseeing trip(Floyd求无向图最小环)
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...
- poj1734 Sightseeing trip[最小环]
一个最小环裸题.最小环的两种求法dijkstra和Floyd直接参见这里我就是从这里学的,不想写了. 注意这里最重要的一个点是利用了Floyd的dp过程中路径上点不超过$k$这一性质,来枚举环上最大编 ...
- POJ1734 Sightseeing trip (Floyd求最小环)
学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...
- 「POJ1734」Sightseeing trip
「POJ1734」Sightseeing trip 传送门 这题就是要我们求一个最小环并且按顺序输出一组解. 考虑 \(O(n^3)\) 地用 \(\text{Floyd}\) 求最小环: 考虑 \( ...
- 【poj1734】Sightseeing trip
Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8520 Accepted: 3200 ...
- URAL 1004 Sightseeing Trip(最小环)
Sightseeing Trip Time limit: 0.5 secondMemory limit: 64 MB There is a travel agency in Adelton town ...
- 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd
题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...
- poj 1734 Sightseeing trip判断最短长度的环
Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5590 Accepted: 2151 ...
随机推荐
- CSS3如何实现2D转换和3D转换,他们有何区别
CSS3中2D3D技术的发展,带来了更丰富的视觉效果~他们的实现机理是怎样的呢? 1定义 2D: 能够对元素进行移动,缩放,转动,拉长或拉伸. 3D: 允许对元素进行格式化,在三维空间进行操作.元素改 ...
- Lombok(1.14.8) - @Cleanup
@Cleanup @Cleanup,关闭流.如果最后清理资源的方法不是 close(),可以指定,例如 @Cleanup("clean"). package com.huey.lo ...
- 使用spring+mybatis+atomikos+tomcat构建分布式事务
本文通过一个demo,介绍如何使用spring+mybatis+atomikos+tomcat构建在一个事务中涉及两个数据源的web应用. demo功能:实现一个能成功提交和回滚的涉及两个数据库数据源 ...
- 编译mosquitto出现的问题
[root@localhost mosquitto-1.3]# make WITH_TLS=no set -e; for d in lib client src; do make -C ${d}; d ...
- Sql server 大全
一.基础 .说明:删除数据库drop database dbname3.说明:备份sql server--- 创建 备份数据的 deviceUSE masterEXEC sp_addumpdevice ...
- 动态sql语句基本语法
1 普通sql语句可以用exec执行,如: SELECT * FROM video EXEC ('SELECT * FROM video') EXEC sp_executesql N'SELECT * ...
- Servlet之创建与配置
上篇已将介绍完了,下面来实践操作走一个: 首先在名为"com.caiduping"的包中创一个MyFilter的对象: 1 package com.caiduping; 2 3 i ...
- OC3-父类指针指向子类对象
// // Cat.h // OC3-父类指针指向子类对象 // // Created by qianfeng on 15/6/17. // Copyright (c) 2015年 qianfeng. ...
- WINDOWS2008 设置FTP防火墙规则
在防火墙入站规划这里,加上21.20两个端口. 然后重启ftp服务,cmd命令:net stop ftpsvc & net start ftpsvc(重启ftp服务) 一定要重启ftp服务,不 ...
- [Bootstrap]全局样式(一)
页面必须设置为html5文档类型 <!DOCTYPE html> <html lang="zh-CN"> ... </html> 适应移动设备 ...