四点DLT (Direct Linear Transformation) 算法
\(\mathrm{x}_{i}\) 表示变化前的齐次坐标
\(\mathbf{x}_{i}^{\prime}\) 表示变化后的齐次坐标
我们需要求到一个 \(3\times3\) 的变换矩阵 \(\mathrm{H}\) , 使得
\]
令 \(\mathbf{h}^{j\top}\) 表示 \(\mathrm{H}\) 的第 \(j\) 行 , 即 \(\mathrm{H}=[~\mathbf{h}^{1\top};~ \mathbf{h}^{2\top}; ~ \mathbf{h}^{3\top}~]\)
则
\mathbf{h}^{1 \top} \mathbf{x}_{i} \\
\mathbf{h}^{2 \top} \mathbf{x}_{i} \\
\mathbf{h}^{3 \top} \mathbf{x}_{i}
\end{array}\right)
\]
对 \(\mathbf{x}_{i}^{\prime}\) 我们写成 \(\mathbf{x}_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}, w_{i}^{\prime}\right)^{\top}\)
则 \(\mathbf{x}_{i}^{\prime} \times \mathrm{Hx}_{i}\) 可改写成
y_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i}-w_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i} \\
w_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i} \\
x_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}
\end{array}\right)
\]
由于 \(\mathbf{h}^{j\top}\mathrm{x}_i=\mathrm{x}_{i}^{\top}\mathbf{h}^j\), 我们可以将上式改写成
\mathbf{0}^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
-y_{i}^{\prime} \mathbf{x}_{i}^{\top} & x_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top}
\end{array}\right]\left(\begin{array}{c}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right)=\mathbf{0}
\]
简写成 \(\tilde{A}_i\mathbf{h}=\mathbf{0}\), \(\tilde{A}_i\) 是 \(3\times9\) 矩阵, \(\mathbf{h}\) 是 9 维向量
由于 \(\tilde{A}_i\) 的前两行加到第三行会导致第三行变为零, 所以 \(\tilde{A}_i\) 只有前两行有效
所以化简为
\mathbf{0}^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top}
\end{array}\right]\left(\begin{array}{c}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right)=\mathbf{0}
\]
记成 \({A}_i\mathbf{h}=\mathbf{0}\)
由于 \(\mathbf{h}\) 有 9 个未知量, 但只有8条方程, 因此 \(\mathbf{h}\) 会有无穷个解, 这时我们只需加入限定条件 \(||\mathbf{h}||=1\) 即可将解固定
引用: Multiple View Geometry in Computer Vision Second Edition
四点DLT (Direct Linear Transformation) 算法的更多相关文章
- 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
- Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
- 【线性代数】7-2:线性变化的矩阵(The Matrix of a Linear Transformation)
title: [线性代数]7-2:线性变化的矩阵(The Matrix of a Linear Transformation) categories: Mathematic Linear Algebr ...
- 【线性代数】7-1:线性变换思想(The Idea of a Linear Transformation)
title: [线性代数]7-1:线性变换思想(The Idea of a Linear Transformation) categories: Mathematic Linear Algebra k ...
- 数据挖掘入门系列教程(四点五)之Apriori算法
目录 数据挖掘入门系列教程(四点五)之Apriori算法 频繁(项集)数据的评判标准 Apriori 算法流程 结尾 数据挖掘入门系列教程(四点五)之Apriori算法 Apriori(先验)算法关联 ...
- DLT(Direct Linear Transform)算法
1.DLT定义 DLT是一个 用于解决包含尺度问题的最小二乘问题 的算法. DLT解决问题的标准形式为: ...
- linear map (also called a linear mapping, linear transformation or, in some contexts, linear function
Linear map - Wikipedia https://en.wikipedia.org/wiki/Linear_map
- OpenCV 之 透视 n 点问题
透视 n 点问题,源自相机标定,是计算机视觉的经典问题,广泛应用在机器人定位.SLAM.AR/VR.摄影测量等领域 1 PnP 问题 1.1 定义 已知:相机的内参和畸变系数:世界坐标系中,n 个 ...
- [zt]摄像机标定(Camera calibration)笔记
http://www.cnblogs.com/mfryf/archive/2012/03/31/2426324.html 一 作用建立3D到2D的映射关系,一旦标定后,对于一个摄像机内部参数K(光心焦 ...
- ORB_SLAM2 源码阅读 ORB_SLAM2::Initializer
ORB_SLAM2::Initializer 用于单目情况下的初始化. Initializer 的构造函数中传入第一张影像,这张影像被称作 reference frame(rFrame).在获得第二张 ...
随机推荐
- [OpenCV实战]29 使用OpenCV实现红眼自动去除
目录 1 红眼消除 1.1 眼部检测 1.2 红眼遮掩 1.3 清除瞳孔掩模空洞 1.4 红眼修复 2 结果与完整代码 2.1 结果 2.2 代码 3 参考 在本教程中,我们将学习如何完全自动地从照片 ...
- .gitignore文件配置以及gitee提交报Push rejected...错误解决
.gitignore文件配置 .gitignore 文件可以用来忽略被指定的文件或文件夹的改动.记录在.gitignore文件里的文件或文件夹是不会被 git 跟踪到,也就是被忽略的文件是不会被上传到 ...
- hashmap的一些性能测试
目录 0.前言 1.准备工作. 1.1模拟哈希冲突 1.2 java的基准测试. 2.测试初始化长度 3.模拟一百万个元素put,get的差异. 4.模拟无红黑树情况下get效率 4.1 将rando ...
- Ubuntu安装Anaconda并且配置国内镜像教程
前言 我们在学习 Python 的时候需要不同的 Python 版本,关系到电脑环境变量配置换来换去很是麻烦,所以这个时候我们需要一个虚拟的 Python 环境变量,我之前也装过 virtualenv ...
- docker配置阿里云加速
登录阿里云找到镜像加速 搜索容器镜像服务,进入管理控制台 找到镜像加速器,根据下面配置好即可 centos7.7x64例子 sudo mkdir -p /etc/docker sudo tee /et ...
- java入门与进阶 P-3.2+P-3.3+P3.4
数数字 例如:Scanner sc = new Scanner(System.in);int number = sc.nextInt();int count= 0;while(number>0) ...
- 前端如何实现将多页数据合并导出到Excel单Sheet页解决方案|内附代码
前端与数据展示 前后端分离是当前比较盛行的开发模式,它使项目的分工更加明确,后端负责处理.存储数据;前端负责显示数据.前端和后端开发人员通过接口进行数据的交换.因此前端最重要的能力是需要将数据呈现给用 ...
- c++ 程序通用多线程单例设计 c++ web 框架设计经验谈
设计 c++ web 框架时候,想要一个框架缓存类,很多通用缓存类是用字符保存,作为框架内置就不要序列和反序列了,因为框架内部使用. 想给自己的paozhu c++ web 框架添加缓存类,参考了sp ...
- cnpm : 无法将“cnpm”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。所在位置 行:1 字符: 1
出现问题原因: 使用vscode终端powershell控制台查看cnpm版本或者运行cnpm的相关命令时提示如标题错误(cmd控制台提示:'cnpm' 不是内部或外部命令,也不是可运行的程序或批处理 ...
- STM32F1库函数初始化系列:DMA—ADC采集
1 void ADC_Configure(void) 2 { 3 ADC_InitTypeDef ADC_InitStructure; 4 GPIO_InitTypeDef GPIO_InitStru ...