\(\mathrm{x}_{i}\) 表示变化前的齐次坐标

\(\mathbf{x}_{i}^{\prime}\) 表示变化后的齐次坐标

我们需要求到一个 \(3\times3\) 的变换矩阵 \(\mathrm{H}\) , 使得

\[\mathbf{x}_{i}^{\prime} \times \mathrm{Hx}_{i}=\mathbf{0}
\]

令 \(\mathbf{h}^{j\top}\) 表示 \(\mathrm{H}\) 的第 \(j\) 行 , 即 \(\mathrm{H}=[~\mathbf{h}^{1\top};~ \mathbf{h}^{2\top}; ~ \mathbf{h}^{3\top}~]\)

\[\mathrm{H} \mathbf{x}_{i}=\left(\begin{array}{c}
\mathbf{h}^{1 \top} \mathbf{x}_{i} \\
\mathbf{h}^{2 \top} \mathbf{x}_{i} \\
\mathbf{h}^{3 \top} \mathbf{x}_{i}
\end{array}\right)
\]

对 \(\mathbf{x}_{i}^{\prime}\) 我们写成 \(\mathbf{x}_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}, w_{i}^{\prime}\right)^{\top}\)

则 \(\mathbf{x}_{i}^{\prime} \times \mathrm{Hx}_{i}\) 可改写成

\[\mathbf{x}_{i}^{\prime} \times \mathrm{Hx}_{i}=\left(\begin{array}{c}
y_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i}-w_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i} \\
w_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i} \\
x_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}
\end{array}\right)
\]

由于 \(\mathbf{h}^{j\top}\mathrm{x}_i=\mathrm{x}_{i}^{\top}\mathbf{h}^j\), 我们可以将上式改写成

\[\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
-y_{i}^{\prime} \mathbf{x}_{i}^{\top} & x_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top}
\end{array}\right]\left(\begin{array}{c}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right)=\mathbf{0}
\]

简写成 \(\tilde{A}_i\mathbf{h}=\mathbf{0}\), \(\tilde{A}_i\) 是 \(3\times9\) 矩阵, \(\mathbf{h}\) 是 9 维向量

由于 \(\tilde{A}_i\) 的前两行加到第三行会导致第三行变为零, 所以 \(\tilde{A}_i\) 只有前两行有效

所以化简为

\[\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top}
\end{array}\right]\left(\begin{array}{c}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right)=\mathbf{0}
\]

记成 \({A}_i\mathbf{h}=\mathbf{0}\)

由于 \(\mathbf{h}\) 有 9 个未知量, 但只有8条方程, 因此 \(\mathbf{h}\) 会有无穷个解, 这时我们只需加入限定条件 \(||\mathbf{h}||=1\) 即可将解固定

引用: Multiple View Geometry in Computer Vision Second Edition

四点DLT (Direct Linear Transformation) 算法的更多相关文章

  1. 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  2. Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  3. 【线性代数】7-2:线性变化的矩阵(The Matrix of a Linear Transformation)

    title: [线性代数]7-2:线性变化的矩阵(The Matrix of a Linear Transformation) categories: Mathematic Linear Algebr ...

  4. 【线性代数】7-1:线性变换思想(The Idea of a Linear Transformation)

    title: [线性代数]7-1:线性变换思想(The Idea of a Linear Transformation) categories: Mathematic Linear Algebra k ...

  5. 数据挖掘入门系列教程(四点五)之Apriori算法

    目录 数据挖掘入门系列教程(四点五)之Apriori算法 频繁(项集)数据的评判标准 Apriori 算法流程 结尾 数据挖掘入门系列教程(四点五)之Apriori算法 Apriori(先验)算法关联 ...

  6. DLT(Direct Linear Transform)算法

    1.DLT定义            DLT是一个 用于解决包含尺度问题的最小二乘问题 的算法.           DLT解决问题的标准形式为:                            ...

  7. linear map (also called a linear mapping, linear transformation or, in some contexts, linear function

    Linear map - Wikipedia https://en.wikipedia.org/wiki/Linear_map

  8. OpenCV 之 透视 n 点问题

    透视 n 点问题,源自相机标定,是计算机视觉的经典问题,广泛应用在机器人定位.SLAM.AR/VR.摄影测量等领域 1  PnP 问题 1.1  定义 已知:相机的内参和畸变系数:世界坐标系中,n 个 ...

  9. [zt]摄像机标定(Camera calibration)笔记

    http://www.cnblogs.com/mfryf/archive/2012/03/31/2426324.html 一 作用建立3D到2D的映射关系,一旦标定后,对于一个摄像机内部参数K(光心焦 ...

  10. ORB_SLAM2 源码阅读 ORB_SLAM2::Initializer

    ORB_SLAM2::Initializer 用于单目情况下的初始化. Initializer 的构造函数中传入第一张影像,这张影像被称作 reference frame(rFrame).在获得第二张 ...

随机推荐

  1. [OpenCV实战]29 使用OpenCV实现红眼自动去除

    目录 1 红眼消除 1.1 眼部检测 1.2 红眼遮掩 1.3 清除瞳孔掩模空洞 1.4 红眼修复 2 结果与完整代码 2.1 结果 2.2 代码 3 参考 在本教程中,我们将学习如何完全自动地从照片 ...

  2. .gitignore文件配置以及gitee提交报Push rejected...错误解决

    .gitignore文件配置 .gitignore 文件可以用来忽略被指定的文件或文件夹的改动.记录在.gitignore文件里的文件或文件夹是不会被 git 跟踪到,也就是被忽略的文件是不会被上传到 ...

  3. hashmap的一些性能测试

    目录 0.前言 1.准备工作. 1.1模拟哈希冲突 1.2 java的基准测试. 2.测试初始化长度 3.模拟一百万个元素put,get的差异. 4.模拟无红黑树情况下get效率 4.1 将rando ...

  4. Ubuntu安装Anaconda并且配置国内镜像教程

    前言 我们在学习 Python 的时候需要不同的 Python 版本,关系到电脑环境变量配置换来换去很是麻烦,所以这个时候我们需要一个虚拟的 Python 环境变量,我之前也装过 virtualenv ...

  5. docker配置阿里云加速

    登录阿里云找到镜像加速 搜索容器镜像服务,进入管理控制台 找到镜像加速器,根据下面配置好即可 centos7.7x64例子 sudo mkdir -p /etc/docker sudo tee /et ...

  6. java入门与进阶 P-3.2+P-3.3+P3.4

    数数字 例如:Scanner sc = new Scanner(System.in);int number = sc.nextInt();int count= 0;while(number>0) ...

  7. 前端如何实现将多页数据合并导出到Excel单Sheet页解决方案|内附代码

    前端与数据展示 前后端分离是当前比较盛行的开发模式,它使项目的分工更加明确,后端负责处理.存储数据;前端负责显示数据.前端和后端开发人员通过接口进行数据的交换.因此前端最重要的能力是需要将数据呈现给用 ...

  8. c++ 程序通用多线程单例设计 c++ web 框架设计经验谈

    设计 c++ web 框架时候,想要一个框架缓存类,很多通用缓存类是用字符保存,作为框架内置就不要序列和反序列了,因为框架内部使用. 想给自己的paozhu c++ web 框架添加缓存类,参考了sp ...

  9. cnpm : 无法将“cnpm”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径,请确保路径正确,然后再试一次。所在位置 行:1 字符: 1

    出现问题原因: 使用vscode终端powershell控制台查看cnpm版本或者运行cnpm的相关命令时提示如标题错误(cmd控制台提示:'cnpm' 不是内部或外部命令,也不是可运行的程序或批处理 ...

  10. STM32F1库函数初始化系列:DMA—ADC采集

    1 void ADC_Configure(void) 2 { 3 ADC_InitTypeDef ADC_InitStructure; 4 GPIO_InitTypeDef GPIO_InitStru ...