\(\mathrm{x}_{i}\) 表示变化前的齐次坐标

\(\mathbf{x}_{i}^{\prime}\) 表示变化后的齐次坐标

我们需要求到一个 \(3\times3\) 的变换矩阵 \(\mathrm{H}\) , 使得

\[\mathbf{x}_{i}^{\prime} \times \mathrm{Hx}_{i}=\mathbf{0}
\]

令 \(\mathbf{h}^{j\top}\) 表示 \(\mathrm{H}\) 的第 \(j\) 行 , 即 \(\mathrm{H}=[~\mathbf{h}^{1\top};~ \mathbf{h}^{2\top}; ~ \mathbf{h}^{3\top}~]\)

\[\mathrm{H} \mathbf{x}_{i}=\left(\begin{array}{c}
\mathbf{h}^{1 \top} \mathbf{x}_{i} \\
\mathbf{h}^{2 \top} \mathbf{x}_{i} \\
\mathbf{h}^{3 \top} \mathbf{x}_{i}
\end{array}\right)
\]

对 \(\mathbf{x}_{i}^{\prime}\) 我们写成 \(\mathbf{x}_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}, w_{i}^{\prime}\right)^{\top}\)

则 \(\mathbf{x}_{i}^{\prime} \times \mathrm{Hx}_{i}\) 可改写成

\[\mathbf{x}_{i}^{\prime} \times \mathrm{Hx}_{i}=\left(\begin{array}{c}
y_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i}-w_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i} \\
w_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i} \\
x_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}
\end{array}\right)
\]

由于 \(\mathbf{h}^{j\top}\mathrm{x}_i=\mathrm{x}_{i}^{\top}\mathbf{h}^j\), 我们可以将上式改写成

\[\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
-y_{i}^{\prime} \mathbf{x}_{i}^{\top} & x_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top}
\end{array}\right]\left(\begin{array}{c}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right)=\mathbf{0}
\]

简写成 \(\tilde{A}_i\mathbf{h}=\mathbf{0}\), \(\tilde{A}_i\) 是 \(3\times9\) 矩阵, \(\mathbf{h}\) 是 9 维向量

由于 \(\tilde{A}_i\) 的前两行加到第三行会导致第三行变为零, 所以 \(\tilde{A}_i\) 只有前两行有效

所以化简为

\[\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top}
\end{array}\right]\left(\begin{array}{c}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right)=\mathbf{0}
\]

记成 \({A}_i\mathbf{h}=\mathbf{0}\)

由于 \(\mathbf{h}\) 有 9 个未知量, 但只有8条方程, 因此 \(\mathbf{h}\) 会有无穷个解, 这时我们只需加入限定条件 \(||\mathbf{h}||=1\) 即可将解固定

引用: Multiple View Geometry in Computer Vision Second Edition

四点DLT (Direct Linear Transformation) 算法的更多相关文章

  1. 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  2. Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  3. 【线性代数】7-2:线性变化的矩阵(The Matrix of a Linear Transformation)

    title: [线性代数]7-2:线性变化的矩阵(The Matrix of a Linear Transformation) categories: Mathematic Linear Algebr ...

  4. 【线性代数】7-1:线性变换思想(The Idea of a Linear Transformation)

    title: [线性代数]7-1:线性变换思想(The Idea of a Linear Transformation) categories: Mathematic Linear Algebra k ...

  5. 数据挖掘入门系列教程(四点五)之Apriori算法

    目录 数据挖掘入门系列教程(四点五)之Apriori算法 频繁(项集)数据的评判标准 Apriori 算法流程 结尾 数据挖掘入门系列教程(四点五)之Apriori算法 Apriori(先验)算法关联 ...

  6. DLT(Direct Linear Transform)算法

    1.DLT定义            DLT是一个 用于解决包含尺度问题的最小二乘问题 的算法.           DLT解决问题的标准形式为:                            ...

  7. linear map (also called a linear mapping, linear transformation or, in some contexts, linear function

    Linear map - Wikipedia https://en.wikipedia.org/wiki/Linear_map

  8. OpenCV 之 透视 n 点问题

    透视 n 点问题,源自相机标定,是计算机视觉的经典问题,广泛应用在机器人定位.SLAM.AR/VR.摄影测量等领域 1  PnP 问题 1.1  定义 已知:相机的内参和畸变系数:世界坐标系中,n 个 ...

  9. [zt]摄像机标定(Camera calibration)笔记

    http://www.cnblogs.com/mfryf/archive/2012/03/31/2426324.html 一 作用建立3D到2D的映射关系,一旦标定后,对于一个摄像机内部参数K(光心焦 ...

  10. ORB_SLAM2 源码阅读 ORB_SLAM2::Initializer

    ORB_SLAM2::Initializer 用于单目情况下的初始化. Initializer 的构造函数中传入第一张影像,这张影像被称作 reference frame(rFrame).在获得第二张 ...

随机推荐

  1. [深度学习] tf.keras入门5-模型保存和载入

    目录 设置 基于checkpoints的模型保存 通过ModelCheckpoint模块来自动保存数据 手动保存权重 整个模型保存 总体代码 模型可以在训练中或者训练完成后保存.具体文档参考:http ...

  2. BBS升级版

    BBS项目 项目的前期准备 1.django2.2 创建一个django目录 (需要配置环境变量和数据库) 'DIRS': [os.path.join(BASE_DIR, 'templates'), ...

  3. Java学习笔记:2022年1月8日

    Java学习笔记:2022年1月8日 摘要:这天主要学习了HTML超文本标记语言以及CSS层叠样式表的基本知识,主要就是通过这两种技术进行基本的网页渲染. 目录 Java学习笔记:2022年1月8日 ...

  4. java入门与进阶 P-3.2+P-3.3+P3.4

    数数字 例如:Scanner sc = new Scanner(System.in);int number = sc.nextInt();int count= 0;while(number>0) ...

  5. 行为型模式 - 备忘录模式Memento

    学习而来,代码是自己敲的.也有些自己的理解在里边,有问题希望大家指出. 模式的定义与特点 在备忘录模式(Memento Pattern)下,为的是在不破坏封装性的前提下,捕获一个对象的内部状态,并在该 ...

  6. 前端基础知识-html(一)个人学习记录

    待补充 块级元素与行内元素,常见举例 html5新特性?

  7. Java集合 Map 集合 与 操作集合的工具类: Collections 的详细说明

    Java集合 Map 集合 与 操作集合的工具类: Collections 的详细说明 每博一文案 别把人生,输给心情 师父说:心情不是人生的全部,却能左右人生的全部. 你有没有体会到,当你心情好的时 ...

  8. TamperMonkey油猴脚本获取

    TamperMonkey官网-脚本获取页面    https://www.tampermonkey.net/scripts.php?ext=dhdg 脚本站点1:Userscript.ZoneSear ...

  9. 互斥锁、线程理论、GIL全局解释器、信号量、event事件、进程池和线程池以及协程

    目录 一.互斥锁代码实操 1.互斥锁的概念 2.互斥锁的使用 3.死锁现象 4. 小结 二.线程理论 进程 线程 线程简介 为什么要使用多线程? 多线程概念 多进程的优点: 线程与进程的区别 线程的特 ...

  10. Kubernetes(k8s)控制器(四):ReplicaSet

    目录 一.系统环境 二.前言 三.ReplicaSet概览 四.ReplicaSet工作原理 五.ReplicaSet使用场景 六.创建ReplicaSet 七.扩展replicaset副本数 一.系 ...