1 #include <bits/stdc++.h>
2 using namespace std;
3 typedef long long ll;
4 const int N = 5e6 + 10;
5 ll fac[N], sv[N], inv[N], a[N];
6 ll n, p, k;
7 void read(ll &x) {
8 x = 0; int f = 1; char ch = getchar();
9 while (ch < '0' || ch >'9') {if (ch == '-') f = -1; ch = getchar();}
10 while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
11 x *= f;
12 }
13 ll quickpow(ll x, ll y) {
14 ll ans = 1;
15 while (y) {
16 if (y & 1) ans = ans * x % p;
17 x = x * x % p;
18 y >>= 1;
19 }
20 return ans % p;
21 }
22 signed main() {
23 read(n), read(p), read(k);
24 fac[0] = 1;
25 for (int i = 1; i <= n; i ++) {
26 read(a[i]);
27 fac[i] = fac[i - 1] * a[i] % p;
28 }
29 sv[n] = quickpow(fac[n], p - 2);
30 for (int i = n; i >= 1; i --) sv[i - 1] = sv[i] * a[i] % p;
31 ll tmp = 1, ans = 0;
32 for (int i = 1; i <= n; i ++) {
33 tmp = (tmp * k) % p;
34 ans = (ans + ((sv[i] * fac[i - 1] % p)) * tmp) % p;
35 }
36 printf("%lld\n", ans);
37 return 0;
38 }

P5431 【模板】乘法逆元 2的更多相关文章

  1. 【洛谷P3811】[模板]乘法逆元

    乘法逆元 题目链接 求逆元的三种方式: 1.扩欧 i*x≡1 (mod p) 可以化为:x*i+y*p=1 exgcd求x即可 inline void exgcd(int a,int b,int &a ...

  2. P5431 【模板】乘法逆元2

    洛谷题目链接 刚开始做乘法逆元还是有点懵逼的~ 以下式子都在模\(p\)意义下进行 我们把式子改一下,变成:\[\sum\limits_{i=1}^nk^i\times a_i^{-1}\] 我们先算 ...

  3. 逆元-P3811 【模板】乘法逆元-洛谷luogu

    https://www.cnblogs.com/zjp-shadow/p/7773566.html -------------------------------------------------- ...

  4. P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 线性递推逆元模板 #include<iostream> #include<cstdio> #include<cstring> #def ...

  5. [洛谷P3811]【模板】乘法逆元

    P3811 [模板]乘法逆元 题意 求1-n所有整数在模p意义下的逆元. 分析 逆元 如果x满足\(ax=1(\%p)\)(其中a p是给定的数)那么称\(x\)是在\(%p\)意义下\(a\)的逆元 ...

  6. 模板【洛谷P3811】 【模板】乘法逆元

    P3811 [模板]乘法逆元 给定n,p求1~n中所有整数在模p意义下的乘法逆元. T两个点的费马小定理求法: code: #include <iostream> #include < ...

  7. luogu P3811 【模板】乘法逆元

    题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下的逆元. 输入输出样例 输入样 ...

  8. 洛谷 P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下 ...

  9. 洛谷——P3811 【模板】乘法逆元

    P3811 [模板]乘法逆元 线性求逆元 逆元定义:若$a*x\equiv1 (\bmod {b})$,且$a$与$b$互质,那么我们就能定义: $x$为$a$的逆元,记为$a^{-1}$,所以我们也 ...

  10. 洛谷—— P3811 【模板】乘法逆元

    https://www.luogu.org/problem/show?pid=3811 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式 ...

随机推荐

  1. C#异步延迟Task.Delay

    一. 1.Task.Delay实质是创建一个任务,再任务中开启一个定时间,然后延时指定的时间2.Task.Delay不和await一起使用情况,当代码遇到Task.Delay一句时,创建了了一个新的任 ...

  2. java实现wordCount的map

    打开IDEA,File--new --Project,新建一个项目 我们已经安装好了maven,不用白不用 这里不要选用骨架,Next.在写上Groupid,Next. 写上项目名称,finish.o ...

  3. mysql 之full join

    首先,mysql中是不支持full join的,如果要实现类似的功能可以用union all,union会剔除重复.以下是实现实例 create table if not exists t1(`id` ...

  4. 程序思想中的冒泡法在python和1200PLC中scl高级编程中的应用

    冒泡排序:是计算机科学领域里面的一种算法. header 这个算法名字的由来是因为在执行算法的时候越小的元素会经由交换慢慢"浮"到数列的顶端(升序或降序排列),就如同碳酸饮料中二氧 ...

  5. Ubuntu 20.04安装Docker

    Docker学习系列文章 入门必备:十本你不容错过的Docker入门到精通书籍推荐 day1.全面的Docker快速入门教程 day2.CentOS 8.4安装Docker day3.Windows1 ...

  6. Linux 12 安装Docker

    参考源 https://www.bilibili.com/video/BV187411y7hF?spm_id_from=333.999.0.0 版本 本文章基于 CentOS 7.6 这里使用 yum ...

  7. 记一次 ClickHouse 性能测试

    前言 在工作场景中,我们会采集工厂设备数据用于智能控制,数据的存储用了 InfluxDB,随着数据规模越来越大,InfluxDB 的性能越来越差,故考虑引入 ClickHouse 分担 InfluxD ...

  8. django中视图函数的FBV和CBV

    1.什么是FBV和CBV FBV是指视图函数以普通函数的形式:CBV是指视图函数以类的方式. 2.普通FBV形式 def index(request): return HttpResponse('in ...

  9. Java-面向对象三大特征、设计规则

    1)封装: 1.1)类:封装的是对象的属性和行为 1.2)方法:封装的是具体的业务逻辑实现 1.3)访问控制修饰符:封装的是访问的权限 2)继承: 2.1)作用:代码的复用 2.2)父类/基类:共有的 ...

  10. [HDU3976]Electric resistance(电阻)(信竞&物竞)(高斯消元)

    题面 Problem Description Now give you a circuit who has n nodes (marked from 1 to n) , please tell abc ...