【poj2553】The Bottom of a Graph(强连通分量缩点)
题目链接:http://poj.org/problem?id=2553
【题意】
给n个点m条边构成一幅图,求出所有的sink点并按顺序输出。sink点是指该点能到达的点反过来又能回到该点。
【思路】
不难想象sink点一定是在强连通分量中,而且强连通分量缩点后出度为0,就可以说明该强连通分量内所有的点都是sink点。
之前wa了一发是因为写成了out[i],注意是从缩点构成的dag中找出度为0的点,而不是从原来的图中找。
【ac代码】
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <stack>
#include <vector>
#include <cstring>
using namespace std;
const int N = ;
int low[N], vis[N], dfn[N], col[N], out[N], ans[N];
vector<int>V[N];
stack<int>s;
int n, cnt, num;
void dfs(int u)
{
s.push(u);
vis[u] = ;
dfn[u] = low[u] = ++cnt;
for (int i = ; i < V[u].size(); i++)
{
int v = V[u][i];
if (!dfn[v])
{
dfs(v);
low[u] = min(low[u], low[v]);
}
else if (vis[v])
low[u] = min(low[u], dfn[v]);
}
if (low[u] == dfn[u])
{
int t;
num++;
do
{
t = s.top();
s.pop();
col[t] = num;
vis[t] = ;
}
while (t != u);
}
} void tarjan()
{
int i;
memset(dfn, , sizeof(dfn));
memset(low, , sizeof(low));
memset(vis, , sizeof(vis));
memset(col, , sizeof(col));
while (!s.empty()) s.pop();
cnt = num = ;
for (i = ; i <= n; i++)
if (!dfn[i]) dfs(i);
}
int main()
{
int m, i, j;
while(scanf("%d", &n), n)
{
scanf("%d", &m);
for(i = ; i <= n; i++) V[i].clear();
int a, b;
while(m--)
{
scanf("%d%d", &a, &b);
V[a].push_back(b);
}
tarjan();
memset(out, , sizeof out);
for(i = ; i <= n; i++)
for(j = ; j < V[i].size(); j++)
{
int v = V[i][j];
if(col[i] != col[v]) out[col[i]]++;//该颜色出度+1
}
cnt = ;
for(i = ; i <= n; i++)
if(!out[col[i]]) ans[++cnt] = i;
sort(ans+, ans++cnt);
for(i = ; i < cnt; i++) printf("%d ", ans[i]);
printf("%d\n", ans[cnt]);
}
return ;
}
【poj2553】The Bottom of a Graph(强连通分量缩点)的更多相关文章
- poj 2553 The Bottom of a Graph(强连通分量+缩点)
题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K ...
- POJ-2552-The Bottom of a Graph 强连通分量
链接: https://vjudge.net/problem/POJ-2553 题意: We will use the following (standard) definitions from gr ...
- POJ 2553 The Bottom of a Graph (强连通分量)
题目地址:POJ 2553 题目意思不好理解.题意是:G图中从v可达的全部点w,也都能够达到v,这种v称为sink.然后升序输出全部的sink. 对于一个强连通分量来说,全部的点都符合这一条件,可是假 ...
- POJ2553 The Bottom of a Graph(强连通分量+缩点)
题目是问,一个有向图有多少个点v满足∀w∈V:(v→w)⇒(w→v). 把图的强连通分量缩点,那么答案显然就是所有出度为0的点. 用Tarjan找强连通分量: #include<cstdio&g ...
- POJ1236Network of Schools[强连通分量|缩点]
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 16571 Accepted: 65 ...
- POJ1236Network of Schools(强连通分量 + 缩点)
题目链接Network of Schools 参考斌神博客 强连通分量缩点求入度为0的个数和出度为0的分量个数 题目大意:N(2<N<100)各学校之间有单向的网络,每个学校得到一套软件后 ...
- HD2767Proving Equivalences(有向图强连通分量+缩点)
题目链接 题意:有n个节点的图,现在给出了m个边,问最小加多少边是的图是强连通的 分析:首先找到强连通分量,然后把每一个强连通分量缩成一个点,然后就得到了一个DAG.接下来,设有a个节点(每个节点对应 ...
- UVa11324 The Largest Clique(强连通分量+缩点+记忆化搜索)
题目给一张有向图G,要在其传递闭包T(G)上删除若干点,使得留下来的所有点具有单连通性,问最多能留下几个点. 其实这道题在T(G)上的连通性等同于在G上的连通性,所以考虑G就行了. 那么问题就简单了, ...
- ZOJ3795 Grouping(强连通分量+缩点+记忆化搜索)
题目给一张有向图,要把点分组,问最少要几个组使得同组内的任意两点不连通. 首先考虑找出强连通分量缩点后形成DAG,强连通分量内的点肯定各自一组,两个强连通分量的拓扑序能确定的也得各自一组. 能在同一组 ...
随机推荐
- Django的model模型
一:字段选项 1,null =True 表示数据库的中可以存为null 默认值是False 2,blank=True 表示字段可以为空 默认值是False 3,chioces 由二项元组构成的一 ...
- cookies设置时间
默认cookies失效时间是直到关闭浏览器,cookies失效,也可以指定cookies时间. Response.Cookies("user_name").Expires=Date ...
- 3509.com 纵横天下虚拟主机,垃圾中的战斗机
被纵横天下主机(3509.com)这间垃圾公司气疯了,他们公司自己要更换server(空间).居然把我挂在上面的站点数据弄丢了.并且更换连一封Email通知都没有.更离谱的是,跟他们反映这个情况后.他 ...
- STL 中的链表排序
一直以来学习排序算法, 都没有在链表排序上下太多功夫,因为用得不多.最近看STL源码,才发现,原来即使是链表,也能有时间复杂度为O(nlogn)的算法, 大大出乎我的意料之外,一般就能想到个插入排序. ...
- s5_day14作业
import re # 1. 匹配一段文本中的每行的邮箱 # ret=re.findall('\w+@\w+\.com','10000@qq.com,qwe48645313@163.com') # p ...
- 微信小程序学习笔记(5)--------框架之视图层
这一系列转载:http://blog.csdn.net/zsp45212/article/details/53518238 视图层 框架的视图层由wxml与wxss编写,由组件进行展示.将逻辑层的数据 ...
- 初学hadoop的个人历程
在学习hadoop之前,我就明确了要致力于大数据行业,成为优秀的大数据研发工程师的目标,有了大目标之后要分几步走,然后每一步不断细分,采用大事化小的方法去学习hadoop.下面开始叙述我是如何初 ...
- HDU - 6315 Naive Operations (线段树+思维) 2018 Multi-University Training Contest 2
题意:数量为N的序列a和b,a初始全为0,b为给定的1-N的排列.有两种操作:1.将a序列区间[L,R]中的数全部+1:2.查询区间[L,R]中的 ∑⌊ai/bi⌋(向下取整) 分析:对于一个位置i, ...
- HTML,CSS,font-family:中文字体的英文名称
宋体 SimSun 黑体 SimHei 微软雅黑 Microsoft YaHei 微软正黑体 Microsoft JhengHei 新宋体 NSimSun 新细明体 PMingLiU 细明体 Ming ...
- jst格式化日期
jsp页面需引入fmt标签:<taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt"> ...