BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)
Description
我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1。一个元素相邻的元素包括它本
身,及他上下左右的4个元素(如果存在)。
给定矩阵的行数和列数,请计算并输出一个和谐的矩阵。注意:所有元素为0的矩阵是不允许的。
Input
输入一行,包含两个空格分隔的整数m和n,分别表示矩阵的行数和列数。
Output
输出包含m行,每行n个空格分隔整数(0或1),为所求矩阵。测试数据保证有解。
Sample Input
Sample Output
1 1 1 0
0 0 0 1
1 1 0 1
数据范围
1 <=m, n <=40
Solution
讲真这个题不知道比1770那个题低到哪里去了(其实差不多)
会做那个题一定会做这个【认真脸
很明显这个还是构造01矩阵然后解异或方程组
只不过这个构造出来的矩阵是n*m的,n^3显然很吃力
那么我们把1770代码里的异或用bitset来搞常数就小很多了
听说bitset随便虐1e9?
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#include<bitset>
#define N (1600+100)
#define id(x,y) (x-1)*m+y
using namespace std; bitset<N>f[N];
int ans[N],n,m;
int dx[]={,,-,,,},dy[]={,,,,-,}; void Gauss(int n)
{
for (int i=; i<=n; ++i)
{
int num=i;
for (int j=i+; j<=n; ++j)
if (f[j][i]>f[num][i]) num=j;
if (num!=i) swap(f[i],f[num]); for (int j=i+; j<=n; ++j)
if (f[j][i]) f[j]^=f[i];//这里用bitset来搞常数好像很小
}
for (int i=n; i>=; --i)
{
if (!f[i][i]) ans[i]=;
else
{
for (int j=i+; j<=n; ++j)
f[i][n+]=f[i][n+]^(f[i][j]*ans[j]);
ans[i]=f[i][n+];
}
}
} int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
for (int k=; k<=; ++k)
{
int x=i+dx[k],y=j+dy[k];
if (x> && x<=n && y> && y<=m)
f[id(i,j)][id(x,y)]=;
}
Gauss(n*m);
for (int i=; i<=n; ++i)
{
for (int j=; j<=m-; ++j)
printf("%d ",ans[id(i,j)]);
printf("%d\n",ans[id(i,m)]);
}
}
BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)的更多相关文章
- P3164 [CQOI2014]和谐矩阵(高斯消元 + bitset)
题意:构造一个$n*m$矩阵 使得每个元素和上下左右的xor值=0 题解:设第一行的每个元素值为未知数 可以依次得到每一行的值 然后把最后一行由题意条件 得到$m$个方程 高斯消元解一下 bitset ...
- BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )
偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...
- [SDOI2010]外星千足虫 题解 高斯消元+bitset简介
高斯消元 + bitset 简介: 高斯消元其实就是以加减消元为核心求唯一解.这道题还是比较裸的,可以快速判断出来.我们将每一只虫子看作一个未知数,这样根据它给出的 m 组方程我们可以高斯消元得出每一 ...
- 【高斯消元】BZOJ3503 [Cqoi2014]和谐矩阵
3503: [Cqoi2014]和谐矩阵 Time Limit: 10 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1197 Solved: ...
- bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)
http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...
- bzoj 1923 [Sdoi2010]外星千足虫(高斯消元+bitset)
1923: [Sdoi2010]外星千足虫 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 634 Solved: 397[Submit][Status ...
- BZOJ_1923_[Sdoi2010]外星千足虫_高斯消元+bitset
BZOJ_1923_[Sdoi2010]外星千足虫_高斯消元 Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结 ...
- 矩阵&&高斯消元
矩阵运算: \(A\times B\)叫做\(A\)左乘\(B\),或者\(B\)右乘\(A\). 行列式性质: \(1.\)交换矩阵的两行(列),行列式取相反数. \(2.\)某一行元素都\(\ti ...
- POJ 1830 开关问题 【01矩阵 高斯消元】
任意门:http://poj.org/problem?id=1830 开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1 ...
随机推荐
- Delphi下OpenGL2d绘图(01)-初始化
一.前言: Delphi默认支持OpenGl,可以uses OpenGL单元进行引用,便可以使用OpenGL的函数.OpenGl是跨平台的,而且Windows很早就支持并集成在系统中,存在于syste ...
- .netCore2.0 配置文件
之前的asp.net 的配置文件都是xml格式,而.netCore的配置文件则采用Json键值对的格式来存储,具体获取如下 var config = new ConfigurationBuilder( ...
- log4j的简单使用
引入jar包org.apache.log4j.Logger,项目src目录下建立一个log4j.properties配置文件 log4j.rootLogger=INFO,A1,R log4j.appe ...
- 三、Bean的初始化
一.使用构造器实例化Bean:这是最简单的方式,Spring IOC容器既能使用默认空构造器也能使用有参构造器两种方式创建bean 空构造器 <bean name="bean1&quo ...
- css3打包后自动追加前缀插件:autoprefixer
用vue-cli构建的项目脚手架已经帮你把autoprefixer的配置做好了,自己不需要做什么改动就会自动加前缀: 下面一起看看涉及到autoprefixer这个插件的一些配置: 1,postcss ...
- vue学习笔记(一)
一.MVC 和 MVVM 的区别 MVC: Model(模型)应用程序中用于处理应用程序数据逻辑的部分(通常模型对象负责在数据库中存取数据). View(视图)显示数据(通常视图是依据模型数据创建的) ...
- CSS3,3D效果轮播图
---恢复内容开始--- 大家还记得我昨天的3D拖拽立方体吗??我昨天还说过css还可以做轮播图,所以咱们今天就写一下,css的轮播图吧! ....这个轮播图主要是用CSS3里的transform的旋 ...
- Javascript 多物体运动1
多物体运动 <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <ti ...
- set(string str)变量传参为int的问题
if (bo.getAnesthesiaMode() != null) { if (bo.getAnesthesiaMode() != null) { CodeMstrCoMpare codeMstr ...
- ORM(Object Relational Mapping)框架
ORM(Object Relational Mapping)框架 ORM(Object Relational Mapping)框架采用元数据来描述对象一关系映射细节,元数据一般采用XML格式,并且存放 ...