传送门:

http://acm.hdu.edu.cn/showproblem.php?pid=1053

Entropy

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7233    Accepted Submission(s): 3047

Problem Description
An entropy encoder is a data encoding method that achieves lossless data compression by encoding a message with “wasted” or “extra” information removed. In other words, entropy encoding removes information that was not necessary in the first place to accurately encode the message. A high degree of entropy implies a message with a great deal of wasted information; english text encoded in ASCII is an example of a message type that has very high entropy. Already compressed messages, such as JPEG graphics or ZIP archives, have very little entropy and do not benefit from further attempts at entropy encoding.

English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency than do most other letters in english text. If a way could be found to encode just these letters with four bits, then the new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII uses a fixed number of bits for a reason, however: it’s easy, since one is always dealing with a fixed number of bits to represent each possible glyph or character. How would an encoding scheme that used four bits for the above letters be able to distinguish between the four-bit codes and eight-bit codes? This seemingly difficult problem is solved using what is known as a “prefix-free variable-length” encoding.

In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph is allowed to be the prefix of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit, and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free constraint was not enforced, then such a decoding would be impossible.

Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A” with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16 bits; the resulting bit pattern would be “0000000000011011”. This is still a fixed-length encoding, however; we’re using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by encoding it with fewer bits? In fact we can, but in order to maintain a prefix-free encoding, some of the other bit patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with “110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that the encodings for B, C and D could be interchanged freely for any given encoding without increasing the size of the final encoded message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of 4.9 to 1 (that is, each bit in the final encoded message represents as much information as did 4.9 bits in the original encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it simple to decode this into the original text even though the codes have varying bit lengths.

As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an optimal encoding. The letters “C”, “I’ and “N” only occur once, however, so they will have the longest codes.

There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is, that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces with “00”, “A” with “100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011” and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be necessary to encode the message with 8-bit ASCII encoding, a compression ratio of 2.8 to 1.

 
Input
The input file will contain a list of text strings, one per line. The text strings will consist only of uppercase alphanumeric characters and underscores (which are used in place of spaces). The end of the input will be signalled by a line containing only the word “END” as the text string. This line should not be processed.
 
Output
For each text string in the input, output the length in bits of the 8-bit ASCII encoding, the length in bits of an optimal prefix-free variable-length encoding, and the compression ratio accurate to one decimal point.
 
Sample Input
AAAAABCD
THE_CAT_IN_THE_HAT
END
 
Sample Output
64 13 4.9
144 51 2.8
 
Source
 
Recommend
We have carefully selected several similar problems for you:  1051 1054 1052 3177 1055 
 
题意是,给出一排字符串,要求求出字符的8位编码的长度,哈夫曼编码值,以及之间的比值
 
因为仅仅只要求求出哈夫曼编码值,所以不用建立哈夫曼树,可以建立优先队列,只要将每次最小的
 
出队的两个元素合成一个新的大数,然后放进优先队列中,直到只剩下一个元素为止,那个元素就是哈夫曼编码值。
 
注意只有一种字符的情况
 
code:
 
#include<bits/stdc++.h>
using namespace std;
int main()
{
string str;
while(cin>>str)
{
if(str=="END")
break;
int l=str.length();
int a[]={};
for(int i=;i<l;i++)
{
if(str[i]=='_')
{
a[]++;
}else
{
a[str[i]-'A'+]++;//字符统计
}
}
int f=;
for(int i=;i<;i++)//字符串单一字符情况
{
if(a[i]==l)
{
f=;
break;
}
}
if(f==)
{
printf("%d %d 8.0\n",l*,l);
continue;
}
//每次选择两个出现频率高的合成一共新的结点,然后再压入,直到队列力只有一个元素
priority_queue<int,vector<int>,greater<int> > q;//优先队列实现哈夫曼编码总权值
for(int i=;i<;i++)
{
if(a[i]!=)
q.push(a[i]);//压入
}
int ans=;
int x,y;
while()
{
x=q.top(),q.pop();
if(q.empty())
break;
y=q.top(),q.pop();
ans+=x+y;
q.push(x+y);
}
printf("%d %d %0.1lf\n",l*,ans,double(l*8.0/(ans*1.0)));
}
return ;
}
 

HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)的更多相关文章

  1. hdu 1053 Entropy (哈夫曼树)

    Entropy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  2. hdoj 1053 Entropy(用哈夫曼编码)优先队列

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1053 讲解: 题意:给定一个字符串,根据哈夫曼编码求出最短长度,并求出比值. 思路:就是哈夫曼编码.把 ...

  3. [C++]哈夫曼树(最优满二叉树) / 哈夫曼编码(贪心算法)

    一 哈夫曼树 1.1 基本概念 算法思想 贪心算法(以局部最优,谋求全局最优) 适用范围 1 [(约束)可行]:它必须满足问题的约束 2 [局部最优]它是当前步骤中所有可行选择中最佳的局部选择 3 [ ...

  4. HDU 1053 & HDU 2527 哈夫曼编码

    http://acm.hdu.edu.cn/showproblem.php?pid=1053 #include <iostream> #include <cstdio> #in ...

  5. HDU2527 哈夫曼编码

    Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  6. *HDU1053 哈夫曼编码

    Entropy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  7. hdu2527哈夫曼编码

    /* Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...

  8. [POJ 1521]--Entropy(哈夫曼树)

    题目链接:http://poj.org/problem?id=1521 Entropy Time Limit: 1000MS    Memory Limit: 10000K Description A ...

  9. 图像压缩编解码实验(DCT编码+量化+熵编码(哈夫曼编码))【MATLAB】

    课程要求 Assignment IV Transform + Quantization + Entropy Coding Input: an intra-frame or a residue pict ...

随机推荐

  1. 对Mybatis的初步认识

    1.认识Mybatis MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架. MyBatis 消除了几乎所有的 JDBC 代码和参数的手工设置以及对结果集的检索. MyBat ...

  2. 数据库字段值为null利用setInc方法无法直接写入

    1.数据库字段值为null利用setInc方法无法直接写入,先判断是否为空,再写入. if($points->add($dataList)){ $user=M('cuser'); $null=$ ...

  3. [Java]private, public,protected,friendly的区别(转载)一下子就记住了

    http://teddyboy200382.blog.163.com/blog/static/320112002008825112549780/ 说明这四个关键字之前,我想就 class 之间的关系做 ...

  4. 基于Vue的WebApp项目开发(二)

    利用webpack解析和打包.vue组件页面 相关知识: vue项目中的每个页面其实都是一个.vue的文件,这种文件,Vue称之为组件页面,必须借助于webpack的vue-loader才能运行,所以 ...

  5. Jmeter对HTTP请求压力测试、并发测试

    最近公司需要开发一个简单的报名系统,供外网用户提供报名服务,由于我们公司是个初创的微型公司,开发人员都是刚毕业不久,开发经验相当缺乏. 对于服务器性能测试这块的经验更是少得可以忽略.迫使不得不让我们去 ...

  6. python 进程池的使用

    进程同步 进程的数据是独立存在的,进程也能加锁. from multiprocessing import Process, Lock def f(l,i): l.acquire() print('he ...

  7. Windows ->> FIX: “The security database on the server does not have a computer account for this workstation trust relationship”

    前几天在做AlwaysOn实验时遇到搭建活动目录域时某台已经加入AD的机器无法以域管理员账户登录的情况. 报错信息是:The security database on the server does ...

  8. SQL Server ->> 时间函数: EOMONTH, DATEFROMPARTS, TIMEFROMPARTS, DATETIMEFROMPARTS, DATETIMEOFFSETFROMPARTS

    上面几个函数都是SQL Server 2012新增的时间函数. EOMONTH 返回传入时间的月结束日,返回数据类型为DATE SELECT EOMONTH(GETDATE()) 结果为 DATEFR ...

  9. windows常用快捷命令

    打开控制面板 control.exe 1.操作中心 wscui.cpl 2.Windows防火墙 Firewall.cpl 3.设备管理器 hdwwiz.cpl 4.Internet属性 inetcp ...

  10. svn merge error must be ancestrally related to,trunk merge branch报错

    trunk merge branch的时候报错 xxx must be ancestrally related to xxx,这个报错的意思是两者不关联,所以需要去建立关联. [回顾背景]       ...