HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)
传送门:
http://acm.hdu.edu.cn/showproblem.php?pid=1053
Entropy
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7233    Accepted Submission(s): 3047
English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency than do most other letters in english text. If a way could be found to encode just these letters with four bits, then the new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII uses a fixed number of bits for a reason, however: it’s easy, since one is always dealing with a fixed number of bits to represent each possible glyph or character. How would an encoding scheme that used four bits for the above letters be able to distinguish between the four-bit codes and eight-bit codes? This seemingly difficult problem is solved using what is known as a “prefix-free variable-length” encoding.
In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph is allowed to be the prefix of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit, and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free constraint was not enforced, then such a decoding would be impossible.
Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A” with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16 bits; the resulting bit pattern would be “0000000000011011”. This is still a fixed-length encoding, however; we’re using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by encoding it with fewer bits? In fact we can, but in order to maintain a prefix-free encoding, some of the other bit patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with “110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that the encodings for B, C and D could be interchanged freely for any given encoding without increasing the size of the final encoded message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of 4.9 to 1 (that is, each bit in the final encoded message represents as much information as did 4.9 bits in the original encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it simple to decode this into the original text even though the codes have varying bit lengths.
As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an optimal encoding. The letters “C”, “I’ and “N” only occur once, however, so they will have the longest codes.
There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is, that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces with “00”, “A” with “100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011” and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be necessary to encode the message with 8-bit ASCII encoding, a compression ratio of 2.8 to 1.
THE_CAT_IN_THE_HAT
END
144 51 2.8
#include<bits/stdc++.h>
using namespace std;
int main()
{
string str;
while(cin>>str)
{
if(str=="END")
break;
int l=str.length();
int a[]={};
for(int i=;i<l;i++)
{
if(str[i]=='_')
{
a[]++;
}else
{
a[str[i]-'A'+]++;//字符统计
}
}
int f=;
for(int i=;i<;i++)//字符串单一字符情况
{
if(a[i]==l)
{
f=;
break;
}
}
if(f==)
{
printf("%d %d 8.0\n",l*,l);
continue;
}
//每次选择两个出现频率高的合成一共新的结点,然后再压入,直到队列力只有一个元素
priority_queue<int,vector<int>,greater<int> > q;//优先队列实现哈夫曼编码总权值
for(int i=;i<;i++)
{
if(a[i]!=)
q.push(a[i]);//压入
}
int ans=;
int x,y;
while()
{
x=q.top(),q.pop();
if(q.empty())
break;
y=q.top(),q.pop();
ans+=x+y;
q.push(x+y);
}
printf("%d %d %0.1lf\n",l*,ans,double(l*8.0/(ans*1.0)));
}
return ;
}
HDU 1053 Entropy(哈夫曼编码 贪心+优先队列)的更多相关文章
- hdu 1053 Entropy (哈夫曼树)
		
Entropy Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
 - hdoj 1053 Entropy(用哈夫曼编码)优先队列
		
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1053 讲解: 题意:给定一个字符串,根据哈夫曼编码求出最短长度,并求出比值. 思路:就是哈夫曼编码.把 ...
 - [C++]哈夫曼树(最优满二叉树) / 哈夫曼编码(贪心算法)
		
一 哈夫曼树 1.1 基本概念 算法思想 贪心算法(以局部最优,谋求全局最优) 适用范围 1 [(约束)可行]:它必须满足问题的约束 2 [局部最优]它是当前步骤中所有可行选择中最佳的局部选择 3 [ ...
 - HDU 1053 & HDU 2527 哈夫曼编码
		
http://acm.hdu.edu.cn/showproblem.php?pid=1053 #include <iostream> #include <cstdio> #in ...
 - HDU2527 哈夫曼编码
		
Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
 - *HDU1053 哈夫曼编码
		
Entropy Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
 - hdu2527哈夫曼编码
		
/* Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
 - [POJ 1521]--Entropy(哈夫曼树)
		
题目链接:http://poj.org/problem?id=1521 Entropy Time Limit: 1000MS Memory Limit: 10000K Description A ...
 - 图像压缩编解码实验(DCT编码+量化+熵编码(哈夫曼编码))【MATLAB】
		
课程要求 Assignment IV Transform + Quantization + Entropy Coding Input: an intra-frame or a residue pict ...
 
随机推荐
- javaweb之请求的转发和重定向
			
1.什么是请求转发和请求重定向? 请求转发: xxServlet收到请求,然后直接转发给yyServlet,然后yyServlet返回给客户端.整个过程中,客户端发出一个请求,收到一个响应. 重定向: ...
 - https加解密过程
			
前前后后,看了许多次关于https加解密过程的相关文档资料,一直似懂非懂.这次,终于理解了,还画了个图,做个记录. 知识点 1.对称加密:双方用同一个密码加解密.如des,aes 2.非对称加密:双方 ...
 - 一、IOC和DI的概念
			
IOC---Inversion of Control (控制反转) 在java中,IOC意味着将你设计好的对象交给容器控制,而不是传统的在你对象内部直接控制. 谁控制谁,控制什么 -->IOC ...
 - csharp:using Newtonsoft.Json.Net2.0 in .net 2.0 webform
			
/// <summary> /// http://www.weather.com.cn/data/sk/101280601.html /// {"weatherinfo" ...
 - shiro(java安全框架)
			
shiro(java安全框架) 以下都是综合之前的人加上自己的一些小总结 Apache Shiro是一个强大且易用的Java安全框架,执行身份验证.授权.密码学和会话管理.使用Shiro的易于理解的A ...
 - leetcode-wildcard matching-ZZ
			
http://yucoding.blogspot.com/2013/02/leetcode-question-123-wildcard-matching.html 几个例子: (1) acbdeabd ...
 - jQuery的事件绑定和解绑
			
1.绑定事件 $('获取的标签对象').bind('要操作的方法, {操作的内容 是字典的形式},function(){} ') 语法: bind(type,data,fn) 描述:为每一个匹配元 ...
 - Oracle使用超大SQL脚本文件恢复数据问题记录
			
在以前获取的Oracle数据库备份一般都是dmp文件,创建表空间和用户就直接使用imp或者impdp导入即可. 这一次遇到的情况比较特殊,对方提供数据时给我的是使用SQLPlus导出的SQL脚本文件, ...
 - IIS 7 启用 gzip 静态压缩 压缩js和css文件
			
搞了很久,不如nginx好弄,不知道怎么修改压缩比,也不知道怎么压缩的规则是啥(管理器上没有写),不过反正出来了,一个js文件900多K变成了100多K 1.在web.config文件里面加上: &l ...
 - Oracle数据库设计实例-实时生产效率系统数据库设计
			
Oracle数据库设计实例-实时生产效率系统数据库设计 引言 1.1 设计前提 某部门经理要求IT部门设计一个流水线实时生产效率系统,用来统计实时的生产量和效率.流水线有数百条,实时间隔为1min. ...