[luogu1468]派对灯

题目描述

在IOI98的节日宴会上,我们有N(10<=N<=100)盏彩色灯,他们分别从1到N被标上号码。 这些灯都连接到四个按钮:

按钮1:当按下此按钮,将改变所有的灯:本来亮着的灯就熄灭,本来是关着的灯被点亮。

按钮2:当按下此按钮,将改变所有奇数号的灯。

按钮3:当按下此按钮,将改变所有偶数号的灯。

按钮4:当按下此按钮,将改变所有序号是3*K+1(K>=0)的灯。例如:1,4,7...

一个计数器C记录按钮被按下的次数。当宴会开始,所有的灯都亮着,此时计数器C为0。

你将得到计数器C(0<=C<=10000)上的数值和经过若干操作后某些灯的状态。写一个程序去找出所有灯最后可能的与所给出信息相符的状态,并且没有重复。

输入输出格式

输入格式:

不会有灯会在输入中出现两次。

第一行: N。

第二行: C最后显示的数值。

第三行: 最后亮着的灯,用一个空格分开,以-1为结束。

第四行: 最后关着的灯,用一个空格分开,以-1为结束。

输出格式:

每一行是所有灯可能的最后状态(没有重复)。每一行有N个字符,第1个字符表示1号灯,最后一个字符表示N号灯。0表示关闭,1表示亮着。这些行必须从小到大排列(看作是二进制数)。

如果没有可能的状态,则输出一行'IMPOSSIBLE'。

输入输出样例

输入样例#1:

10
1
-1
7 -1
输出样例#1:

0000000000
0101010101
0110110110

说明

在这个样例中,有三种可能的状态:

所有灯都关着

1,4,7,10号灯关着,2,3,5,6,8,9亮着。

1,3,5,7,9号灯关着,2, 4, 6, 8, 10亮着。

翻译来自NOCOW

USACO 2.2

试题分析:第一眼看:很暴力!但再看一眼,发现我们只需要枚举第一次的操作,然后看是否满足条件,条件分以下几种:

①变换完不满足要求 X

②变换完满足要求但最后调完会变成不满足要求的:(C-k)%2!=0

③调的次数大于C的

以二进制形式枚举1到16,每位表示这个操作用不用

              然后经过处理不合法,在用结构体排一下序(因为方便)就AC了

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<stack>
#include<vector>
#include<algorithm>
//#include<cmath> using namespace std;
const int INF = 9999999;
#define LL long long inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
int N,C;
bool light[1001];
bool dark[1001];
bool cnt[1001];
int ta;
struct data{
int seq[105];
}ans[5001]; bool cmp(data a,data b){
for(int i=1;i<=N;i++){
if(a.seq[i]!=b.seq[i]) return a.seq[i]<b.seq[i];
}
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
N=read(),C=read();
int tmp;
tmp=read();
while(tmp!=-1){
light[tmp]=1;
tmp=read();
}
tmp=read();
while(tmp!=-1){
dark[tmp]=1;
tmp=read();
}
for(int i=1;i<=16;i++){
memset(cnt,1,sizeof(cnt));
int k=0;
if(i&(1<<0)){k++;for(int j=1;j<=N;j++) cnt[j]=1-cnt[j];}
if(i&(1<<1)){k++;for(int j=1;j<=N;j+=2) cnt[j]=1-cnt[j];}
if(i&(1<<2)){k++;for(int j=2;j<=N;j+=2) cnt[j]=1-cnt[j];}
if(i&(1<<3)) {k++;for(int j=0;3*j+1<=N;j++) cnt[3*j+1]=1-cnt[3*j+1];}
bool flag=true;
for(int i=1;i<=N;i++){
if(cnt[i]!=1&&light[i]==1){
flag=false;
break;
}
}
for(int i=1;i<=N;i++){
if(cnt[i]!=0&&dark[i]==1){
flag=false;
break;
}
}
if(!flag) continue;
if((C-k)%2!=0||k>C) continue;
++ta;
for(int j=1;j<=N;j++)
ans[ta].seq[j]=cnt[j];
}
if(!ta){
puts("IMPOSSIBLE");
return 0;
}
sort(ans+1,ans+ta+1,cmp);
for(int i=1;i<=ta;i++){
for(int j=1;j<=N;j++)
printf("%d",ans[i].seq[j]);
printf("\n");
}
return 0;
}

  

【BFS/DFS/YY】派对灯的更多相关文章

  1. POJ 2227 The Wedding Juicer (优先级队列+bfs+dfs)

    思路描述来自:http://hi.baidu.com/perfectcai_/item/701f2efa460cedcb0dd1c820也可以参考黑书P89的积水. 题意:Farmer John有一个 ...

  2. 邻结矩阵的建立和 BFS,DFS;;

    邻结矩阵比较简单,, 它的BFS,DFS, 两种遍历也比较简单,一个用队列, 一个用数组即可!!!但是邻接矩阵极其浪费空间,尤其是当它是一个稀疏矩阵的时候!!!-------------------- ...

  3. Collect More Jewels(hdu1044)(BFS+DFS)

    Collect More Jewels Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe ...

  4. 【搜索】P1468 派对灯 Party Lamps

    P1468 派对灯 Party Lamps 我们来分析一下对灯的操作 1.对所有灯的,这时吧所有灯看成一个整体 2.奇偶数的操作,这时可以把每两个数看成一个循环节 3.对3X+ 1的操作,这时可以把每 ...

  5. luoguP1468 派对灯 Party Lamps x

    P1468 派对灯 Party Lamps 题目描述 在IOI98的节日宴会上,我们有N(10<=N<=100)盏彩色灯,他们分别从1到N被标上号码. 这些灯都连接到四个按钮: 按钮1:当 ...

  6. Cleaning Robot (bfs+dfs)

    Cleaning Robot (bfs+dfs) Here, we want to solve path planning for a mobile robot cleaning a rectangu ...

  7. LeetCode:BFS/DFS

    BFS/DFS 在树专题和回溯算法中其实已经涉及到了BFS和DFS算法,这里单独提出再进一步学习一下 BFS 广度优先遍历 Breadth-First-Search 这部分的内容也主要是学习了labu ...

  8. BFS/DFS算法介绍与实现(转)

    广度优先搜索(Breadth-First-Search)和深度优先搜索(Deep-First-Search)是搜索策略中最经常用到的两种方法,特别常用于图的搜索.其中有很多的算法都用到了这两种思想,比 ...

  9. FZU 2150 Fire Game (bfs+dfs)

    Problem Description Fat brother and Maze are playing a kind of special (hentai) game on an N*M board ...

随机推荐

  1. Farey Sequence (欧拉函数+前缀和)

    题目链接:http://poj.org/problem?id=2478 Description The Farey Sequence Fn for any integer n with n >= ...

  2. httpd -v command not found

    使用 find / -name "apachectl"查找文件目录下执行 ./apachectl -v

  3. TDD随想录

    TDD随想录 谨以本文献给TDD的开创者与传播者 本文纯属个人经历,如有雷同纯属巧合 我从不觉得自己是一个好的程序员,甚至可能连合格都谈不上,不过在内心深处我却渴望着在编程这件事上获得成功. 可惜每次 ...

  4. Angular2.0 基础:双向数据绑定 [(ngModel)]

    在属性绑定中,值从模型到屏幕上的目标属性 (property). 通过把属性名括在方括号中来标记出目标属性,[]. 这是从模型到视图的单向数据绑定. 而在事件绑定中,值是从屏幕上的目标属性 到 mod ...

  5. 常见网络命令之Ping命令

    前言:计算机网络老师要求我们自己总结一下常见的网络命,然后上课可以上去讲一下这些命令使用,像我这么听话的好学生,肯定是照老师要求,认真的总结了一下,总结的过程中,我发现网上已经有的资源讲的都不是很详细 ...

  6. 土司论坛nc反弹神器使用方法

    说明: PS:我本机是linux,因为没有服务器所以使用win7来演示.倘若你是windows可以在本机生成dll以后再放到服务器上面去执行dll即可反弹shell物理机ip:192.168.1.12 ...

  7. Linux 入门记录:二十、Linux 包管理工具 YUM

    一.YUM(Yellowdog Updater, Modified) 1. YUM 简介 RPM 软件包形式管理软件虽然方便,但是需要手动解决软件包的依赖问题.很多时候安装一个软件首先需要安装 1 个 ...

  8. WoW[www]

    WoWBeez https://github.com/StealtheeEU/WoWBeez https://github.com/mtucker6784/Elysium https://github ...

  9. 如何设置static tableview的section区域高度

    重写代理方法- (CGFloat) tableView:(UITableView *)tableView heightForHeaderInSection:(NSInteger)section { i ...

  10. centos创建子用户

    #adduser 用户名 #passwd 用户名 设置自己的密码即可 授权 个人用户的权限只可以在本home下有完整权限,其他目录要看别人授权.而经常需要root用户的权限,这时候sudo可以化身为r ...