LOJ2587:[APIO2018]铁人两项——题解
https://loj.ac/problem/2587#submit_code

(题面来自LOJ)
考试时候发觉树很可做,并且写了一个dp骗到了树的分。
苦于不会圆方树……现在回来发现这题还是很可做的!
先套路套圆方树,然后思考路径条数如何计算。
一个显然的想法:从一个点双-> 一个点双->……-> 一个点双,条数没准就是每个点双的大小!
于是我们能够想到方点的权值为点双的大小。
当然注意到我们选择的起点/终点以及每个点双之间相邻的切点只能走一次,为了去重,我们把圆点权值设为-1。
则任取起点s,终点t的情况就是s->t的路径上所有点的权值和。
当然此时我们可以用dp做,但是我当时的代码没拷于是现在我也忘了怎么做了,我们换一种大家普遍(我看其他人代码)的一种方法。
我们求出来每个点u,有多少条路径通过它即可,具体dp可以看我的代码注释。
以及注意这题每个结点之间至多有一条,而不是至少!坑死我了。
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=2e5+;
const int M=N*;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int u[M],v[M],nxt[M];
int cnt,head[N];
void init(){
cnt=;
memset(head,,sizeof(head));
}
void add(int U,int V){
u[++cnt]=U;v[cnt]=V;nxt[cnt]=head[U];head[U]=cnt;
}
}e,g;
int n,m;
int dfn[N],low[N],to[N],t,l;
ll w[N];
stack<int>q;
void tarjan(int u,int f){
dfn[u]=low[u]=++t;
for(int i=g.head[u];i;i=g.nxt[i]){
int v=g.v[i];
if(!dfn[v]){
q.push(i);
tarjan(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u]){
int num;l++;
do{
num=q.top();q.pop();
int uu=g.u[num],vv=g.v[num];
if(to[uu]!=l){
to[uu]=l;
e.add(uu,l+n);e.add(l+n,uu);
w[l+n]++;w[uu]=-;
}
if(to[vv]!=l){
to[vv]=l;
e.add(vv,l+n);e.add(l+n,vv);
w[l+n]++;w[vv]=-;
}
}while(num!=i);
}
}else if(low[u]>dfn[v]&&f!=v){
q.push(i);
low[u]=dfn[v];
}
}
}
bool vis[N];
ll ans,size[N],sum;
void dfs1(int u,int f){
vis[u]=;
size[u]=(u<=n);
for(int i=e.head[u];i;i=e.nxt[i]){
int v=e.v[i];
if(v==f)continue;
dfs1(v,u);
size[u]+=size[v];
}
}
void dfs2(int u,int f){
for(int i=e.head[u];i;i=e.nxt[i]){
int v=e.v[i];
if(v==f)continue;
dfs2(v,u);
ans+=w[u]*size[v]*(sum-size[v]);
//以v根树为起点和以v根树补集为终点
//已经暗含了当u合法的时候,以u为终点的路径
}
ans+=w[u]*(sum-size[u])*size[u];
//以u根树补集为起点和以u根树为终点
if(u<=n)ans+=w[u]*(sum-);//以u为起点的路径
}
int main(){
n=read(),m=read();
for(int i=;i<=m;i++){
int u=read(),v=read();
g.add(u,v);g.add(v,u);
}
for(int i=;i<=n;i++)
if(!dfn[i])tarjan(i,);
for(int i=;i<=n;i++){
if(!vis[i]){
dfs1(i,);sum=size[i];dfs2(i,);
}
}
printf("%lld\n",ans);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
LOJ2587:[APIO2018]铁人两项——题解的更多相关文章
- [APIO2018]铁人两项 --- 圆方树
[APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...
- [APIO2018]铁人两项——圆方树+树形DP
题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...
- [APIO2018]铁人两项 [圆方树模板]
把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...
- [APIO2018]铁人两项(圆方树)
过了14个月再重新看这题,发现圆方树从来就没有写过.然后写了这题发现自己APIO2018打铁的原因竟然是没开long long,将树的部分的O(n)写挂了(爆int),毕竟去年APIO时我啥都不会,连 ...
- 2019.03.29 bzoj5463: [APIO2018] 铁人两项(圆方树+树形dp)
传送门 题意简述:给你一张无向图,问你满足存在从a−>b−>ca->b->ca−>b−>c且不经过重复节点的路径的有序点对(a,b,c)(a,b,c)(a,b,c) ...
- LOJ.2587.[APIO2018]铁人两项Duathlon(圆方树)
题目链接 LOJ 洛谷P4630 先对这张图建圆方树. 对于S->T这条(些)路径,其对答案的贡献为可能经过的所有点数,那么我们把方点权值设为联通分量的大小,可以直接去求树上路径权值和. 因为两 ...
- [BZOJ5463][APIO2018]铁人两项:Tarjan+圆方树
分析 根据题目中的要求,从\(s\)出发前往\(f\)一定可以,并且只可能经过这两个结点所在的点双连通分量和它们之间的点双连通分量,因此切换点\(c\)只能从这些点中选取. 建出圆方树后,因为圆方树上 ...
- 洛谷P4630 [APIO2018]铁人两项 [广义圆方树]
传送门 又学会了一个新东西好开心呢~ 思路 显然,假如枚举了起始点\(x\)和终止点\(y\),中转点就必须在它们之间的简单路径上. 不知为何想到了圆方树,可以发现,如果把方点的权值记为双联通分量的大 ...
- [BZOJ5463] [APIO2018] 铁人两项
题目链接 LOJ. BZOJ. Solution 先建圆方树. 我们考虑暴力,枚举一个点对,我们枚举的点都是圆点,然后统计中间那个点可以取的位置的数量,加起来就是答案. 那么怎么统计呢,我们对于每个点 ...
随机推荐
- protected修饰符详解
protected这个修饰符,各大参考书都会这样说:访问权限为类内,包内和子类,因此在父类中定义的方法和成员变量如果为protected修饰的,是可以在不同包中的子类进行访问的,示例代码如下: pac ...
- 从细节处谈Android冷启动优化
本文来自网易云社区 Android APP冷启动优化,对于Android开发同学而言可能是个老生常谈的技优了. 之所以花时间写一篇冷启动优化的文章: 我想从另外一个角度来说冷启动优化,如题所述,从细节 ...
- H5-基础-day01
类选择器和ID选择器 相同点:可以应用于任何元素不同点: 1.ID选择器只能在文档中使用一次.与类选择器不同,在一个HTML文档中,ID选择器只能使用一次,而且仅一次.而类选择器可以使用多次. 2 ...
- 学会了vim中的自动补全功能
好开心,再也不用再多个工具之间切换了,哈哈 擦,功能太弱
- 「日常训练」All Friends(POJ-2989)
题意 分析 代码 #include <iostream> #include <cstring> #include <algorithm> #define MP ma ...
- 说一说VIN码识别,车架号识别那些事
对于有车一族的朋友来说,日常接触比较多的是车牌.行驶证.驾驶证,而知道VIN码/车架号码的比较少. 其实,对于车辆来说,VIN码/车架号码非常重要,它就像人的身份证一样,VIN码/车架号码是车辆唯一的 ...
- 接口测试工具postman(五)批量执行测试用例
1.准备好测试用例及相关数据 2.点击Run按钮 3.选择运行collection或者folder 4.运行完成
- leetcode-数数并说
数数并说 报数序列是指一个整数序列,按照其中的整数的顺序进行报数,得到下一个数.其前五项如下: 1. 1 2. 11 3. 21 4. 1211 5. 111221 1 被读作 " ...
- ActiveMQ服务器之间传输对象,项目A发送对象到项目B接收发送对象《二》
ActiveMQ服务器之间传输对象,项目A发送对象到项目B接收发送对象<一> 上一篇文章写到对象之间传输使用线程方式 ,无法使用监听方式,最近解决了使用监听方式接收对象,本次使用配置文件方 ...
- POJ 1696 Space Ant(凸包变形)
Description The most exciting space discovery occurred at the end of the 20th century. In 1999, scie ...