LOJ2587:[APIO2018]铁人两项——题解
https://loj.ac/problem/2587#submit_code

(题面来自LOJ)
考试时候发觉树很可做,并且写了一个dp骗到了树的分。
苦于不会圆方树……现在回来发现这题还是很可做的!
先套路套圆方树,然后思考路径条数如何计算。
一个显然的想法:从一个点双-> 一个点双->……-> 一个点双,条数没准就是每个点双的大小!
于是我们能够想到方点的权值为点双的大小。
当然注意到我们选择的起点/终点以及每个点双之间相邻的切点只能走一次,为了去重,我们把圆点权值设为-1。
则任取起点s,终点t的情况就是s->t的路径上所有点的权值和。
当然此时我们可以用dp做,但是我当时的代码没拷于是现在我也忘了怎么做了,我们换一种大家普遍(我看其他人代码)的一种方法。
我们求出来每个点u,有多少条路径通过它即可,具体dp可以看我的代码注释。
以及注意这题每个结点之间至多有一条,而不是至少!坑死我了。
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=2e5+;
const int M=N*;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int u[M],v[M],nxt[M];
int cnt,head[N];
void init(){
cnt=;
memset(head,,sizeof(head));
}
void add(int U,int V){
u[++cnt]=U;v[cnt]=V;nxt[cnt]=head[U];head[U]=cnt;
}
}e,g;
int n,m;
int dfn[N],low[N],to[N],t,l;
ll w[N];
stack<int>q;
void tarjan(int u,int f){
dfn[u]=low[u]=++t;
for(int i=g.head[u];i;i=g.nxt[i]){
int v=g.v[i];
if(!dfn[v]){
q.push(i);
tarjan(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u]){
int num;l++;
do{
num=q.top();q.pop();
int uu=g.u[num],vv=g.v[num];
if(to[uu]!=l){
to[uu]=l;
e.add(uu,l+n);e.add(l+n,uu);
w[l+n]++;w[uu]=-;
}
if(to[vv]!=l){
to[vv]=l;
e.add(vv,l+n);e.add(l+n,vv);
w[l+n]++;w[vv]=-;
}
}while(num!=i);
}
}else if(low[u]>dfn[v]&&f!=v){
q.push(i);
low[u]=dfn[v];
}
}
}
bool vis[N];
ll ans,size[N],sum;
void dfs1(int u,int f){
vis[u]=;
size[u]=(u<=n);
for(int i=e.head[u];i;i=e.nxt[i]){
int v=e.v[i];
if(v==f)continue;
dfs1(v,u);
size[u]+=size[v];
}
}
void dfs2(int u,int f){
for(int i=e.head[u];i;i=e.nxt[i]){
int v=e.v[i];
if(v==f)continue;
dfs2(v,u);
ans+=w[u]*size[v]*(sum-size[v]);
//以v根树为起点和以v根树补集为终点
//已经暗含了当u合法的时候,以u为终点的路径
}
ans+=w[u]*(sum-size[u])*size[u];
//以u根树补集为起点和以u根树为终点
if(u<=n)ans+=w[u]*(sum-);//以u为起点的路径
}
int main(){
n=read(),m=read();
for(int i=;i<=m;i++){
int u=read(),v=read();
g.add(u,v);g.add(v,u);
}
for(int i=;i<=n;i++)
if(!dfn[i])tarjan(i,);
for(int i=;i<=n;i++){
if(!vis[i]){
dfs1(i,);sum=size[i];dfs2(i,);
}
}
printf("%lld\n",ans);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
LOJ2587:[APIO2018]铁人两项——题解的更多相关文章
- [APIO2018]铁人两项 --- 圆方树
[APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...
- [APIO2018]铁人两项——圆方树+树形DP
题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...
- [APIO2018]铁人两项 [圆方树模板]
把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...
- [APIO2018]铁人两项(圆方树)
过了14个月再重新看这题,发现圆方树从来就没有写过.然后写了这题发现自己APIO2018打铁的原因竟然是没开long long,将树的部分的O(n)写挂了(爆int),毕竟去年APIO时我啥都不会,连 ...
- 2019.03.29 bzoj5463: [APIO2018] 铁人两项(圆方树+树形dp)
传送门 题意简述:给你一张无向图,问你满足存在从a−>b−>ca->b->ca−>b−>c且不经过重复节点的路径的有序点对(a,b,c)(a,b,c)(a,b,c) ...
- LOJ.2587.[APIO2018]铁人两项Duathlon(圆方树)
题目链接 LOJ 洛谷P4630 先对这张图建圆方树. 对于S->T这条(些)路径,其对答案的贡献为可能经过的所有点数,那么我们把方点权值设为联通分量的大小,可以直接去求树上路径权值和. 因为两 ...
- [BZOJ5463][APIO2018]铁人两项:Tarjan+圆方树
分析 根据题目中的要求,从\(s\)出发前往\(f\)一定可以,并且只可能经过这两个结点所在的点双连通分量和它们之间的点双连通分量,因此切换点\(c\)只能从这些点中选取. 建出圆方树后,因为圆方树上 ...
- 洛谷P4630 [APIO2018]铁人两项 [广义圆方树]
传送门 又学会了一个新东西好开心呢~ 思路 显然,假如枚举了起始点\(x\)和终止点\(y\),中转点就必须在它们之间的简单路径上. 不知为何想到了圆方树,可以发现,如果把方点的权值记为双联通分量的大 ...
- [BZOJ5463] [APIO2018] 铁人两项
题目链接 LOJ. BZOJ. Solution 先建圆方树. 我们考虑暴力,枚举一个点对,我们枚举的点都是圆点,然后统计中间那个点可以取的位置的数量,加起来就是答案. 那么怎么统计呢,我们对于每个点 ...
随机推荐
- SpringBoot入门(一)——开箱即用
本文来自网易云社区 Spring Boot是什么 从根本上来讲Spring Boot就是一些库的集合,是一个基于"约定优于配置"的原则,快速搭建应用的框架.本质上依然Spring, ...
- .net MVC 图片水印,半透明
filter:alpha(opacity=50):这个是为IE6设的,可取值在0-100,其它三个0到1.-moz-opacity:0.5; 这个是为了支持一些老版本的Mozilla浏览器.-khtm ...
- python 水仙花
#简单def narcissus(): for n in range(100, 1000, 1): a, b, c = n//100, (n//10)%10, (n%100)%10 if a ** 3 ...
- 阿里云服务器Linux系统安装配置ElasticSearch搜索引擎
近几篇ElasticSearch系列: 1.阿里云服务器Linux系统安装配置ElasticSearch搜索引擎 2.Linux系统中ElasticSearch搜索引擎安装配置Head插件 3.Ela ...
- pyhon文件操作典型代码实现(非常经典!)
1. 编写一个程序,统计当前目录下每个文件类型的文件数,程序实现如图: 实现代码: import os all_files = os.listdir(os.chdir("D:\\" ...
- 基于AdaBoost算法——世纪晟结合Haar-like特征训练人脸检测识别
AdaBoost 算法是一种快速人脸检测算法,它将根据弱学习的反馈,适应性地调整假设的错误率,使在效率不降低的情况下,检测正确率得到了很大的提高. 系统在技术上的三个贡献: 1.用简单的Haa ...
- Linux内核设计笔记14——块I/O层
块I/O层 基本概念 系统中可以随机访问固定大小数据片的硬件设备称做块设备,这些固定大小的数据片称之为块.还有一种基本的设备称之为字符设备,其需要按照顺序访问,比如键盘. 扇区:块设备中最小的寻址单元 ...
- c# winform 服务器提交了协议冲突. Section=ResponseStatusLine
[转] 最近在用.net写一个网络蜘蛛,发现对有的网站用HttpWebrequest抓取网页的时候会报错,捕获异常提示:"服务器提交了协议冲突 Section=ResponseStatusL ...
- 《剑指Offer》题五十一~题六十
五十一.数组中的逆序对 题目:在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数.例如,在数组{7, 5, 6, 4}中,一共存 ...
- Python—集合(在我的世界,你就是唯一)
一.概念与定义 集合类型与数学中集合的概念一致,即包含0个或多个数据项的无序组合. 元素不可重复,只能是固定数据类型元素. 集合(set)属于Python无序可变序列,使用一对大括号作为定界符,元素之 ...