858. Prim算法求最小生成树(模板)
给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。
给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。
由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。
输入格式
第一行包含两个整数n和m。
接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。
数据范围
1≤n≤5001≤n≤500,
1≤m≤1051≤m≤105,
图中涉及边的边权的绝对值均不超过10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
加点
代码:
import java.util.Arrays;
//存在负边,不存在负权回路
//思想:每次加到点集距离最近的点,然后更新其他点到这个点集的距离
//因为n=500,采用邻接矩阵存储
import java.util.Scanner; public class Main{
static final int N=505, INF=0x3f3f3f3f;
static int n,m;
static int g[][]=new int[N][N];
static boolean vis[]=new boolean[N];
static int dis[]=new int[N];
static int res=0;
static int prim(){
Arrays.fill(dis, INF);
for(int i=0;i<n;i++){
int t=-1;
for(int j=1;j<=n;j++)
if(!vis[j] && (t==-1 || dis[t]>dis[j]))
t=j;
if(i!=0 && dis[t]==INF) return INF;//图不连通
if(i!=0) res+=dis[t];//先加上,后边再更新;否则,dis[t]可能被更新,因为自环
vis[t]=true;
for(int j=1;j<=n;j++) dis[j]=Math.min(dis[j], g[t][j]);
}
return res;
}
public static void main(String[] args) {
Scanner scan=new Scanner(System.in);
n=scan.nextInt();
m=scan.nextInt();
for(int i=1;i<=n;i++) Arrays.fill(g[i], INF);
while(m-->0){
int a=scan.nextInt();
int b=scan.nextInt();
int w=scan.nextInt();
g[a][b]=g[b][a]=Math.min(g[a][b],w);//无向边 有重边
}
int t=prim();
if(t==INF) System.out.println("impossible");
else System.out.println(res);
}
}
858. Prim算法求最小生成树(模板)的更多相关文章
- AcWing 858. Prim算法求最小生成树 稀疏图
//稀疏图 #include <cstring> #include <iostream> #include <algorithm> using namespace ...
- HDU-1233 还是畅通工程 (prim 算法求最小生成树)
prim 算法求最小生成树 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- Kruskal和Prim算法求最小生成树
Kruskal算法求最小生成树 测试数据: 5 6 0 1 5 0 2 3 1 2 4 2 4 2 2 3 1 1 4 1 输出: 2 3 1 1 4 1 2 4 2 0 2 3 思路:在保证不产生回 ...
- Prime算法 与 Kruskal算法求最小生成树模板
算法原理参考链接 ==> UESTC算法讲堂——最小生成树 关于两种算法的复杂度分析 ==> http://blog.csdn.net/haskei/article/details/531 ...
- Prim算法求最小生成树
首先在介绍这个算法之前我们要之明确一下什么是最小生成树的概念: 由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 ...
- 图的普里姆(Prim)算法求最小生成树
关于图的最小生成树算法------普里姆算法 首先我们先初始化一张图: 设置两个数据结构来分别代表我们需要存储的数据: lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说 ...
- 图的建立(邻接矩阵)+深度优先遍历+广度优先遍历+Prim算法构造最小生成树(Java语言描述)
主要参考资料:数据结构(C语言版)严蔚敏 ,http://blog.chinaunix.net/uid-25324849-id-2182922.html 代码测试通过. package 图的建 ...
- 利用Kruskal算法求最小生成树解决聪明的猴子问题 -- 数据结构
题目:聪明的猴子 链接:https://ac.nowcoder.com/acm/problem/19964 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个 ...
- Prim算法和Kruskal算法求最小生成树
Prim算法 连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的.最小生成树是连通图的一个连通分量,且所有边的权值和最小. 最小生成树中,一个顶点最多与两个顶点邻接:若连通图有n个顶点,则最小 ...
随机推荐
- 将 ASP.NET Core 2.1 升级到最新的长期支持版本ASP.NET Core 3.1
目录 前言 Microsoft.AspNetCore.Mvc.ViewFeatures.Internal 消失了 升级到 ASP.NET Core 3.1 项目文件(.csproj) Program. ...
- java的异常体系 及强制转换
一,异常 1.常见的几种异常: StackOverFlow 栈溢出错误:写递归函数的时候,没有定义递归结束的条件. ArrayIndexOutofBounds 数组越界:如新new一个数组,in ...
- Sublime text3的安装以及python开发环境的搭建
作者:struct_mooc 博客地址:https://www.cnblogs.com/structmooc/p/12376601.html 一. Sublime text3的安装 1.sublime ...
- 【Android开发艺术探索】理解Window和WindowManager
个人博客: http://www.milovetingting.cn 理解Window和WindowManager Window表示一个窗口的概念,是一个抽象类,具体实现是PhoneWindow,可以 ...
- 「Flink」RocksDB介绍以及Flink对RocksDB的支持
RocksDB介绍 RocksDB简介 RocksDB是基于C++语言编写的嵌入式KV存储引擎,它不是一个分布式的DB,而是一个高效.高性能.单点的数据库引擎.它是由Facebook基于Google开 ...
- .NET CLI简单使用
官方文档https://docs.microsoft.com/zh-cn/dotnet/core/tools/?tabs=netcore2x 创建新项目 查看能创建什么类型的项目 dotnet new ...
- TCP/IP详解阅读记录----第二章 数据链路层
1.以太网 以太网是当今TCP/IP采用的主要的局域网技术.它采用一种称作CSMA/CD的媒体接入方法,其意思是带冲突检测的载波侦听多路接入.它的速率为10Mb/s,地址为48bit. 2.I ...
- luogu P3834 【模板】可持久化线段树 1(主席树) 查询区间 [l, r] 内的第 k 小/大值
————————————————版权声明:本文为CSDN博主「ModestCoder_」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明.原文链接:https:// ...
- [CF1311B] WeirdSort
Solution 按照 \(p[i]\) 进行分段,如果某个 \(k\) 不存在 \(p[i]=k\),那么就把 \(i,i+1\) 分割开 处理出每一段的左端点和右端点 进而处理出每段的最小值和最大 ...
- SpringBoot导出excel数据报错Could not find acceptable representation
转自:https://blog.csdn.net/mate_ge/article/details/93518286?utm_source=distribute.pc_relevant.none-tas ...