Their data

  1. five data set, 100 single channel of EEG signals, each channel EEG has 4097 data point.
  2. to reduce the computation time, they segment each channel with 1024 data sample points per segment.
    4 segment with 1024 data samples.
    Figure 2 showed the examples of time series data of five subsets.

Methodology

transformation of time series EEG signals to complex networks

  1. add nodes: each data smple point is seen as a node
  2. add edges with direction: visibility properties.
  3. add weight: 根据边与水平线的夹角.

$$ \omega_ab = arctan\frac{x_tb - x_ta}{tb - ta}, a < b $$

This paper showed two tables with nodes examples and edge examples, respectively.

Feature extraction

The feature extraction process compresses the large volume EEG data into relevant and important feature vector set at the cost of minimum loss of information.

  1. In this paper, we have extracted two statistical properties of network named as modularity and the average weighted degree of network as features from the weighted visibility graph as these features are able to focus on how the valuable information about the time series can be acquired by analysis the structural pattern of complex networks.

Classification

  1. use two classifier: SVM and KNN classifier by using Euclidean distance.
  2. 这是有监督的学习,而能源的数据是没有分类的.

Performance evaluation

true positive, true negative, false positive, false negative.

Experiments

4097 data points, 4 segments. they investigated that there is not much difference in the accuracy performance when considering segmented and non-segmented approach of EEG signal. Then there is not much difference in the accuracy performance when considering segmented and non-segmented approach of EEG signa

Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy的更多相关文章

  1. Paper: A novel visibility graph transformation of time series into weighted networks

    1. Convert time series into weighted networks. 2. link prediction is used to evaluate the performanc ...

  2. Visibility Graph Analysis of Geophysical Time Series: Potentials and Possible Pitfalls

    Tasks: invest papers  3 篇. 研究主动权在我手里.  I have to.  1. the benefit of complex network: complex networ ...

  3. Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph

    Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ...

  4. Paper: A Novel Time Series Forecasting Method Based on Fuzzy Visibility Graph

    Problem define a fuzzy visibility graph (undirected weighted graph), then give a new similarity meas ...

  5. 谣言检测()《Data Fusion Oriented Graph Convolution Network Model for Rumor Detection》

    论文信息 论文标题:Data Fusion Oriented Graph Convolution Network Model for Rumor Detection论文作者:Erxue Min, Yu ...

  6. 谣言检测(PSIN)——《Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media》

    论文信息 论文标题:Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media论 ...

  7. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  8. [CVPR2017] Visual Translation Embedding Network for Visual Relation Detection 论文笔记

    http://www.ee.columbia.edu/ln/dvmm/publications/17/zhang2017visual.pdf Visual Translation Embedding ...

  9. 轮廓检测论文解读 | Richer Convolutional Features for Edge Detection | CVPR | 2017

    有什么问题可以加作者微信讨论,cyx645016617 上千人的粉丝群已经成立,氛围超好.为大家提供一个遇到问题有可能得到答案的平台. 0 概述 论文名称:"Richer Convoluti ...

随机推荐

  1. opencv —— 在 VS 中的配置

    添加一个新的 .cpp 文件到工程中 打开菜单栏视图中的属性管理器                                                      选择 Debug|x64 ...

  2. NIM游戏的Python实现

    可执行程序下载: 链接:https://pan.baidu.com/s/1xQedrWRBsqQRZvOe91Rvng 提取码:goi9 Nim游戏是博弈论中最经典的模型(之一),它又有着十分简单的规 ...

  3. 【Debian学徒记事】Debian快速呼出Terminal终端

    Debian快速呼出Terminal终端 书接上回,Debian已经安装完毕 失踪的Ctrl+Alt+T 安装完毕启动,我发现了剑很诡异的事,Ctrl+Alt+T居然失灵了 (在多次测试后发现,Deb ...

  4. 使用DataContractJsonSerializer发序列化对象时出现的异常

    最近服务器上的某个程序的错误日志中频繁出现以下异常: Deserialising: There was an error deserializing the object of type {type} ...

  5. 0014 基于DRF框架开发(02 基类视图 GenericAPIView)

    前端于对数据操作的请求基本上就分为四类:增删改查,即增加.删除.修改.查询. 而DRF把前端请求分为两个大类:带ID参数请求和不带ID参数请求. 不带ID参数请求包括:增加.分布多条查询 带ID参数请 ...

  6. Linux更改时区

    在下午查看系统时间,发现时间竟然是凌晨2点过: [root@node01 ~]# date Sat Jul 20 02:34:29 EDT 2019 开始以为是时间不是24小时进制的,百度了一下,参考 ...

  7. sql server针对字符串型数字排序(针对此字符串的长度不一致)

    对于不规则的字符串数字排序,无法按照数字大的大小排序的原因是,字符串数字在数据库中按照ASCII码排序,从字符的第一个数字对比,首先就会将为首个数字相同的排在一起,在从这些字符串里面对比第二个数字,如 ...

  8. Visual Studio Code 搭建 C/C++开发环境方法总结

    之前看错资料踩了不少坑,先将可行经验总结如下: 1. 下载 Visual Studio Code 并安装.地址:https://code.visualstudio.com 2. 安装 C/C++插件与 ...

  9. jQuery---手风琴案例+stop的使用(解决动画队列的问题)

    手风琴案例+stop的使用(解决动画队列的问题) stop();// 停止当前正在执行的动画 <!DOCTYPE html> <html lang="en"> ...

  10. 【巨杉数据库SequoiaDB】巨杉Tech | 分布式数据库Sysbench测试最佳实践

    引言 作为一名DBA,时常需要对某些数据库进行一些基准测试,进而掌握数据库的性能情况.本文就针对sysbench展开介绍,帮助大家了解sysbench的一般使用方法. ​ sysbench简介 什么是 ...