Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy
Their data
- five data set, 100 single channel of EEG signals, each channel EEG has 4097 data point.
- to reduce the computation time, they segment each channel with 1024 data sample points per segment.
4 segment with 1024 data samples.
Figure 2 showed the examples of time series data of five subsets.
Methodology
transformation of time series EEG signals to complex networks
- add nodes: each data smple point is seen as a node
- add edges with direction: visibility properties.
- add weight: 根据边与水平线的夹角.
$$ \omega_ab = arctan\frac{x_tb - x_ta}{tb - ta}, a < b $$
This paper showed two tables with nodes examples and edge examples, respectively.
Feature extraction
The feature extraction process compresses the large volume EEG data into relevant and important feature vector set at the cost of minimum loss of information.
- In this paper, we have extracted two statistical properties of network named as modularity and the average weighted degree of network as features from the weighted visibility graph as these features are able to focus on how the valuable information about the time series can be acquired by analysis the structural pattern of complex networks.
Classification
- use two classifier: SVM and KNN classifier by using Euclidean distance.
- 这是有监督的学习,而能源的数据是没有分类的.
Performance evaluation
true positive, true negative, false positive, false negative.
Experiments
4097 data points, 4 segments. they investigated that there is not much difference in the accuracy performance when considering segmented and non-segmented approach of EEG signal. Then there is not much difference in the accuracy performance when considering segmented and non-segmented approach of EEG signa
Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy的更多相关文章
- Paper: A novel visibility graph transformation of time series into weighted networks
1. Convert time series into weighted networks. 2. link prediction is used to evaluate the performanc ...
- Visibility Graph Analysis of Geophysical Time Series: Potentials and Possible Pitfalls
Tasks: invest papers 3 篇. 研究主动权在我手里. I have to. 1. the benefit of complex network: complex networ ...
- Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph
Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ...
- Paper: A Novel Time Series Forecasting Method Based on Fuzzy Visibility Graph
Problem define a fuzzy visibility graph (undirected weighted graph), then give a new similarity meas ...
- 谣言检测()《Data Fusion Oriented Graph Convolution Network Model for Rumor Detection》
论文信息 论文标题:Data Fusion Oriented Graph Convolution Network Model for Rumor Detection论文作者:Erxue Min, Yu ...
- 谣言检测(PSIN)——《Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media》
论文信息 论文标题:Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media论 ...
- 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...
- [CVPR2017] Visual Translation Embedding Network for Visual Relation Detection 论文笔记
http://www.ee.columbia.edu/ln/dvmm/publications/17/zhang2017visual.pdf Visual Translation Embedding ...
- 轮廓检测论文解读 | Richer Convolutional Features for Edge Detection | CVPR | 2017
有什么问题可以加作者微信讨论,cyx645016617 上千人的粉丝群已经成立,氛围超好.为大家提供一个遇到问题有可能得到答案的平台. 0 概述 论文名称:"Richer Convoluti ...
随机推荐
- 浅谈python的第三方库——pandas(终)
作为pandas系列的最终章,本文引出一个数据"复制"问题. 示例如下: 从上图中可以看到:我们对data_pd做了删除一行的操作,但是这并没有改变变量data_pd在内存中的值, ...
- 剑指offer-面试题50-第一个只出现一次的字符-哈希表
/* 题目: 求字符串第一个只出现一次的字符. */ /* 思路: 使用map遍历两次,第一次计数,第二次找到计数为1的第一个字符. */ #include<iostream> #incl ...
- 位运算基础知识及简单例题(待补全Hamilton)
位运算 +++ 1 : 0000000000...01 2 : 0000000000...10 3 : 0000000000...11 补码 1 + x = 0000000000...00 1 + 1 ...
- CGI、FastCGI和php-fpm的概念和区别和运行原理
CGI: CGI的英文是(COMMON GATEWAY INTERFACE)公共网关接口,它的作用就是帮助服务器与语言通信,这里就是nginx和php进行通信,因为nginx和php的语言不通,因此需 ...
- Spark学习之路 (二十)SparkSQL的元数据[转]
概述 SparkSQL 的元数据的状态有两种: 1.in_memory,用完了元数据也就丢了 2.hive , 通过hive去保存的,也就是说,hive的元数据存在哪儿,它的元数据也就存在哪儿. 换句 ...
- CSS:overflow 内容溢出属性
overflow 属性规定当内容溢出元素框时发生的事情 值 描述 visible 默认值.内容不会被修剪,会呈现在元素框之外. hidden 内容会被修剪,并且其余内容是不可见的. scroll 内容 ...
- 剑指offer-面试题30-包含min函数的栈-栈
/* 题目: 定义栈的数据结构,实现一个能够得到栈的最小元素的min函数. */ /* 思路: 错误思路:每次保存当前最小的元素,如果当前最小元素弹出,最小元素是谁? 正确思路:两个栈,一个栈保存数据 ...
- CF1205E Expected Value Again
题意 题意翻译 对于一个字符串\(s\),我们定义其美丽值\(f(s)\)为满足下列两个条件的正整数\(i\)的个数: \(1\leq i<|s|\) \(s\)长度为\(i\)的前缀与后缀相等 ...
- P3329 [ZJOI2011]最小割
题目描述 小白在图论课上学到了一个新的概念--最小割,下课后小白在笔记本上写下了如下这段话: 对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点 s 和 t 不在同一个部分中,则称这 ...
- 初入python
初入python 一定要学好python 求1-100的和: i=1 s=0 while i<101: s=s+i i=i+1 print(s)