Their data

  1. five data set, 100 single channel of EEG signals, each channel EEG has 4097 data point.
  2. to reduce the computation time, they segment each channel with 1024 data sample points per segment.
    4 segment with 1024 data samples.
    Figure 2 showed the examples of time series data of five subsets.

Methodology

transformation of time series EEG signals to complex networks

  1. add nodes: each data smple point is seen as a node
  2. add edges with direction: visibility properties.
  3. add weight: 根据边与水平线的夹角.

$$ \omega_ab = arctan\frac{x_tb - x_ta}{tb - ta}, a < b $$

This paper showed two tables with nodes examples and edge examples, respectively.

Feature extraction

The feature extraction process compresses the large volume EEG data into relevant and important feature vector set at the cost of minimum loss of information.

  1. In this paper, we have extracted two statistical properties of network named as modularity and the average weighted degree of network as features from the weighted visibility graph as these features are able to focus on how the valuable information about the time series can be acquired by analysis the structural pattern of complex networks.

Classification

  1. use two classifier: SVM and KNN classifier by using Euclidean distance.
  2. 这是有监督的学习,而能源的数据是没有分类的.

Performance evaluation

true positive, true negative, false positive, false negative.

Experiments

4097 data points, 4 segments. they investigated that there is not much difference in the accuracy performance when considering segmented and non-segmented approach of EEG signal. Then there is not much difference in the accuracy performance when considering segmented and non-segmented approach of EEG signa

Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy的更多相关文章

  1. Paper: A novel visibility graph transformation of time series into weighted networks

    1. Convert time series into weighted networks. 2. link prediction is used to evaluate the performanc ...

  2. Visibility Graph Analysis of Geophysical Time Series: Potentials and Possible Pitfalls

    Tasks: invest papers  3 篇. 研究主动权在我手里.  I have to.  1. the benefit of complex network: complex networ ...

  3. Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph

    Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ...

  4. Paper: A Novel Time Series Forecasting Method Based on Fuzzy Visibility Graph

    Problem define a fuzzy visibility graph (undirected weighted graph), then give a new similarity meas ...

  5. 谣言检测()《Data Fusion Oriented Graph Convolution Network Model for Rumor Detection》

    论文信息 论文标题:Data Fusion Oriented Graph Convolution Network Model for Rumor Detection论文作者:Erxue Min, Yu ...

  6. 谣言检测(PSIN)——《Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media》

    论文信息 论文标题:Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media论 ...

  7. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  8. [CVPR2017] Visual Translation Embedding Network for Visual Relation Detection 论文笔记

    http://www.ee.columbia.edu/ln/dvmm/publications/17/zhang2017visual.pdf Visual Translation Embedding ...

  9. 轮廓检测论文解读 | Richer Convolutional Features for Edge Detection | CVPR | 2017

    有什么问题可以加作者微信讨论,cyx645016617 上千人的粉丝群已经成立,氛围超好.为大家提供一个遇到问题有可能得到答案的平台. 0 概述 论文名称:"Richer Convoluti ...

随机推荐

  1. CentOS7安装docker和docker-compose

    1.安装docker # 使用yum安装docker yum -y install docker # 启动 systemctl start docker.service # 设置为开机自启动 syst ...

  2. 剑指offer-面试题32-分行从上到下打印二叉树-二叉树遍历

    /* 题目: 分行按层自上向下打印二叉树. */ /* 思路: 使用队列,将节点压入队列中,再弹出来,压入其左右子节点,循环,直到栈为空. 添加两个计数器,current记录当前行的节点数,next记 ...

  3. Vue中vue-i18n结合element-ui实现国际化

    (一)添加依赖模块 在package.json文件中添加vant模块的依赖,如: // package.json { "dependencies": { "element ...

  4. XGBoost学习笔记1

    XGBoost XGBoost这个网红大杀器,似乎很好用,完事儿还是自己推导一遍吧,datacamp上面有辅助的课程,但是不太涉及原理 它究竟有多好用呢?我还没用过,先搞清楚原理,hahaha~ 参考 ...

  5. Markdown数学公式如何打出回归符号

    来源:https://blog.csdn.net/garfielder007/article/details/51646604 函数.符号及特殊字符 语法 效果 语法 效果 语法 效果 \bar{x} ...

  6. vs2015配置cv文件,不用每次新建项目在配置

    首先 选择空项目:新建完成后点击属性管理器 一定要确定你的环境是x86还是x64:我的是x64: 选择新的项目属性表 点击属性配置:配置cv的库目录.包含目录.链接器输入:可参考我前面的博文 Open ...

  7. HDU6537

    题意 英文 做法 将\(a_i>1\)的限制去掉,定义\(g(n,k)\) 显然有\[ans=\sum\limits_{i=0}^{k}(-1)^i \binom{k}{i}g(n,k-i)\] ...

  8. C++野指针的存在方式和误区

    1. char* x;这样的一定是野指针,指针声明时要直接初始化!或者置null也行! 2. int main() { char *x=new char; delete x; cout<< ...

  9. openssl 生成免费证书

    原文链接:https://www.cnblogs.com/tugenhua0707/p/10927722.html 一:什么是openssl? 它的作用是?应用场景是什么? 即百度百科说:openss ...

  10. C++->以读或写方式打开一个文件

    以读或写方式打开一个文件 #include<iostream.h>   //.h以C|非C标准引用库文件 #include<fstream.h> #include<std ...