P2458 [SDOI2006]保安站岗

题意

题目描述

五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序。

已知整个地下超市的所有通道呈一棵树的形状;某些通道之间可以互相望见。总经理要求所有通道的每个端点(树的顶点)都要有人全天候看守,在不同的通道端点安排保安所需的费用不同。

一个保安一旦站在某个通道的其中一个端点,那么他除了能看守住他所站的那个端点,也能看到这个通道的另一个端点,所以一个保安可能同时能看守住多个端点(树的结点),因此没有必要在每个通道的端点都安排保安。

编程任务:

请你帮助超市经理策划安排,在能看守全部通道端点的前提下,使得花费的经费最少。

输入输出格式

输入格式:

第\(1\)行\(n\),表示树中结点的数目。

第\(2\)行至第\(n+1\)行,每行描述每个通道端点的信息,依次为:该结点标号\(i(0<i\leq n)\),在该结点安置保安所需的经费\(k(k\leq 10000)\),该边的儿子数\(m\),接下来\(m\)个数,分别是这个节点的\(m\)个儿子的标号\(r_1,r_2,\dots ,r_m\)。

对于一个\(n(0<n\leq 1500)\)个结点的树,结点标号在\(1\)到\(n\)之间,且标号不重复。

输出格式:

最少的经费。

如右图的输入数据示例

输出数据示例:

输入输出样例

输入样例#1:

6
1 30 3 2 3 4
2 16 2 5 6
3 5 0
4 4 0
5 11 0
6 5 0

输出样例#1:

25

说明

样例说明:在结点\(2,3,4\)安置\(3\)个保安能看守所有的\(6\)个结点,需要的经费最小:\(25\)

思路

开始复健树形\(dp\)。

对于每一个结点,可能有三种保护状态:被儿子保护,被自己保护,被父亲保护。所以我们可以这样设计状态:\(f[i][0/1/2]\)表示结点\(i\)的三种状态下的子树最小经费要求。在下面的代码中,\(0\)表示被父亲保护,\(1\)表示被儿子保护,\(2\)表示被自己保护。转移方程也很简单了。

void dfs(int now)
{
dp[now][0]=0,dp[now][1]=0x3f3f3f3f,dp[now][2]=val[now];//初始值
for(int i=top[now];i;i=nex[i])
{
dfs(to[i]);
dp[now][0]+=min(dp[to[i]][1],dp[to[i]][2]);//儿子不可能被自己保护
dp[now][2]+=min(dp[to[i]][0],min(dp[to[i]][1],dp[to[i]][2]));//儿子的保护状态可以随意选择。
}
for(int i=top[now];i;i=nex[i]) dp[now][1]=min(dp[now][1],dp[now][0]-min(dp[to[i]][1],dp[to[i]][2])+dp[to[i]][2]);//相当于直接记录最大花费的儿子
}

AC代码

#include<bits/stdc++.h>
using namespace std;
const int MAXN=1505;
int n,val[MAXN],dp[MAXN][3];
int cnt,top[MAXN],to[MAXN],nex[MAXN];
bool vis[MAXN];
int read()
{
int re=0;char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
void dfs(int now)
{
dp[now][0]=0,dp[now][1]=0x3f3f3f3f,dp[now][2]=val[now];
for(int i=top[now];i;i=nex[i])
{
dfs(to[i]);
dp[now][0]+=min(dp[to[i]][1],dp[to[i]][2]);
dp[now][2]+=min(dp[to[i]][0],min(dp[to[i]][1],dp[to[i]][2]));
}
for(int i=top[now];i;i=nex[i]) dp[now][1]=min(dp[now][1],dp[now][0]-min(dp[to[i]][1],dp[to[i]][2])+dp[to[i]][2]);
}
int main()
{
n=read();
for(int i=0;i<n;i++)
{
int x=read();val[x]=read();int j=read();
while(j--)
{
int y=read();vis[y]=true;
to[++cnt]=y,nex[cnt]=top[x],top[x]=cnt;
}
}
for(int i=1;i<=n;i++)
if(!vis[i])
{
dfs(i);
printf("%d",min(dp[i][1],dp[i][2]));
return 0;
}
}

Luogu P2458 [SDOI2006]保安站岗(树形dp)的更多相关文章

  1. P2458 [SDOI2006]保安站岗[树形dp]

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  2. Luogu P2458 [SDOI2006]保安站岗【树形Dp】

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  3. [Luogu][P2458] [SDOI2006]保安站岗

    题目链接 看起来似乎跟最小点覆盖有点像.但区别在于: 最小点覆盖要求所有边在其中,而本题要求所有点在其中. 即:一个点不选时,它的儿子不一定需要全选. 画图理解: 对于这样一幅图,本题中可以这样选择: ...

  4. C++ 洛谷 P2458 [SDOI2006]保安站岗 from_树形DP

    P2458 [SDOI2006]保安站岗 没学树形DP的,看一下. 题目大意:一棵树有N个节点,现在需要将所有节点都看守住,如果我们选择了节点i,那么节点i本身,节点i的父亲和儿子都会被看守住. 每个 ...

  5. [luogu 2458][SDOI2006]保安站岗

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  6. 洛谷 P2458 [SDOI2006]保安站岗

    题目传送门 解题思路: 树形DP 可知一个点被控制有且仅有一下三种情况: 1.被父亲节点上的保安控制 2.被儿子节点上的保安控制 3.被当前节点上的保安控制 我们设dp[0/1/2][u]表示u节点所 ...

  7. [SDOI2006] 保安站岗

    题目链接 第一遍不知道为什么就爆零了…… 第二遍改了一下策略,思路没变,结果不知道为什么就 A 了??? 树形 DP 经典问题:选择最少点以覆盖树上所有点(边). 对于本题,设 dp[i][0/1][ ...

  8. 【Luogu】P3174毛毛虫(树形DP)

    题目链接 树形DP水题,设f[x][0]是以x为根的子树,内部只有半条链(就是链的两个端点一个在子树里,一个不在子树里)的最大值,f[x][1]是以x为根的子树,内部有一条完整的链(选两个内部的子树作 ...

  9. Luogu P1273 有限电视网【树形Dp/树形背包】

    题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. 从转播站到转播站以及从 ...

随机推荐

  1. mysql在win系统dos 安装版配置步骤详解

    1.准备工作 下载mysql的最新免安装版本mysql-noinstall-5.1.53-win32.zip,解压缩到相关目录,如:d:\ mysql-noinstall-5.1.53-win32.这 ...

  2. NX二次开发-UFUN多选菜单对话框uc1605

    NX11+VS2013 #include <uf.h> #include <uf_ui.h> UF_initialize(); //多选菜单对话框 char sPromptSt ...

  3. NX二次开发-遍历当前part所有component,把装配子部件设置成工作部件

    NX11+VS2013 #include <uf.h> #include <uf_disp.h> #include <uf_modl.h> #include < ...

  4. 暴力”注入Explorer

    暴力"注入Explorer                      pjf(jfpan20000@sina.com)         向一个运行中的进程注入自己的代码,最自然莫过于使用Cr ...

  5. [转]设置修改CentOS系统时区

    在我们使用CentOS系统的时候,也许时区经常会出现问题,有时候改完之后还是会出错,下面我们就来学习一种方法来改变这个状况.如果没有安装,而你使用的是 CentOS系统 那使用命令 yum insta ...

  6. Neo4j使用简单例子

    Neo4j Versions Most of the examples on this page are written with Neo4j 2.0 in mind, so they skip th ...

  7. sys_call_table HOOK

    sys_call_table 这个东西,其实和 Windows 下的 SSDT 表,在功能上完全相同. 前一阵子学Linux驱动,遇到了这个系统调用表,然后我就想到Windows的SSDT表,既然SS ...

  8. D3.js的基础部分之数组的处理 集合(Set)(v3版本)

    数组的处理 之 集合(set) 集合(Set)是数学中常用的概念,表示具有某种特定性质的事物的总体.集合里的项叫做元素.集合的相关方法有:   d3.set([array]) //使用数组来构建集合, ...

  9. 2019-6-23-WPF-解决弹出模态窗口关闭后,主窗口不在最前

    title author date CreateTime categories WPF 解决弹出模态窗口关闭后,主窗口不在最前 lindexi 2019-06-23 11:48:38 +0800 20 ...

  10. c_数据结构_二叉树的遍历实现

    #include<stdio.h> #include<stdlib.h> #define OK 1 #define ERROR 0 #define OVERFLOW -2 #d ...