一、介绍

二、编程

1、支持向量机的核函数

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets import make_blobs

X, y = make_blobs(n_samples=50, centers=2, random_state=6)
clf = svm.SVC(kernel='rbf', C=1000)
clf.fit(X, y)
plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = clf.decision_function(xy).reshape(XX.shape)
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--'])
ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100, linewidths=1, facecolors='none')
plt.show()

2、不同核函数的SVM对比

from sklearn.datasets import load_wine

def make_meshgrid(x, y, h=.02):
    x_min, x_max = x.min() - 1, x.max() + 1
    y_min, y_max = y.min() - 1, y.max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    return xx, yy

def plot_contours(ax, clf, xx, yy, **params):
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    out = ax.contourf(xx, yy, Z, **params)
    return out

wine = load_wine()
X = wine.data[:, :2]
y = wine.target

C = 1.0
models = (svm.SVC(kernel='linear', C=C),
                 svm.LinearSVC(C=C),
                 svm.SVC(kernel='rbf', gamma=0.7, C=C),
                 svm.SVC(kernel='poly', degree=3, C=C))
models = (clf.fit(X, y) for clf in models)

titles = ('SVC with linear kernel',
            'LinearSVC (linear kernel)',
            'SVC with RBF kernel',
            'SVC with polynomial (defree 3) kernel')

fig, sub = plt.subplots(2, 2)
plt.subplots_adjust(wspace=0.4, hspace=0.4)
X0, X1 = X[:, 0], X[:, 1]
xx, yy = make_meshgrid(X0, X1)

for clf, title, ax in zip(models, titles, sub.flatten()):
    plot_contours(ax, clf, xx, yy,
                           cmap=plt.cm.plasma, alpha=0.8)
    ax.scatter(X0, X1, c=y, cmap=plt.cm.plasma, s=20, edgecolors='k')
    ax.set_xlim(xx.min(), xx.max())
    ax.set_ylim(yy.min(), yy.max())
    ax.set_xlabel('Feature 0')
    ax.set_ylabel('Feature 1')
    ax.set_title(title)

plt.show()

3、SVM实例-波士顿房价回归分析

from sklearn.datasets import load_boston
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

boston = load_boston()
X, y = boston.data, boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=8)
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
plt.plot(X_train_scaled.min(axis=0), 'v', label='train set min')
plt.plot(X_train_scaled.max(axis=0), '^', label='train set max')
plt.plot(X_test_scaled.min(axis=0), 'v', label='test set min')
plt.plot(X_test_scaled.max(axis=0), '^', label='test set max')
plt.show()

机器学习-向量机SVM的更多相关文章

  1. 8.支撑向量机SVM

    1.什么是SVM 下面我们就来介绍一些SVM(Support Vector Machine),首先什么是SVM,它是做什么的?SVM,中文名是支撑向量机,既可以解决分类问题,也可以解决回归问题,我们来 ...

  2. 走过路过不要错过 包你一文看懂支撑向量机SVM

    假设我们要判断一个人是否得癌症,比如下图:红色得癌症,蓝色不得. 看一下上图,要把红色的点和蓝色的点分开,可以画出无数条直线.上图里黄色的分割更好还是绿色的分割更好呢?直觉上一看,就是绿色的线更好.对 ...

  3. 模式识别笔记3-支持向量机SVM

    1. 线性SVM 对两类点的划分问题,这里对比下逻辑回归和SVM的区别: 逻辑回归的思想是,将所有点到决策平面的距离作为损失来进行训练,目标是到决策平面的距离和最小 SVM的思想是,只关注支持向量(图 ...

  4. 机器学习实战笔记(Python实现)-05-支持向量机(SVM)

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  5. Python----支持向量机SVM

    1.1. SVM介绍 SVM(Support Vector Machines)——支持向量机.其含义是通过支持向量运算的分类器.其中“机”的意思是机器,可以理解为分类器. 1.2. 工作原理 在最大化 ...

  6. class-支持向量机SVM全析笔记

    support vector machines,SVM是二类分类模型.定义在特征空间上间隔最大的线性分类器,由于包括核技巧实质上成为非线性分类器.学习策略是间隔最大化,可形式化为求解凸二次规划问题(c ...

  7. NLP自然语言处理系列5-支持向量机(SVM)

    1.什么是支持向量机 支持向量机(Support Vector Machine,SVM)是一种经典的分类模型,在早期的文档分类等领域有一定的应用.了解SVM的推导过程是一个充满乐趣和挑战的过程,耐心的 ...

  8. ML-支持向量机(SVM)

    简介 支持向量机是一种二分类模型,寻找一个超平面来对样本进行分割,分割的原则是保证间隔最大化. 如果一个线性函数能够将样本分开,称这些数据样本是线性可分的. 在二维空间线性函数就是一条直线,在三维空间 ...

  9. Python-基于向量机SVM的文本分类

    项目代码见 Github: 1.算法介绍 2.代码所用数据 详情参见http://qwone.com/~jason/20Newsgroups/ 文件结构 ├─doc_classification.py ...

随机推荐

  1. Vue2.0 Vue.set的使用

    原文链接: https://blog.csdn.net/qq_30455841/article/details/78666571

  2. Linux 内核取消 urb

    为停止一个已经提交给 USB 核心的 urb, 函数 usb_kill_urb 或者 usb_unlink_urb 应 当被调用: int usb_kill_urb(struct urb *urb); ...

  3. 抓取IOS的apsd进程流量

    IOS的apsd是Apple Push Service的相关进程,很多系统服务都跟他有关,比如iMessage.Homekit,因此想抓包查看他是怎么实现的. 1.搜索发现相关资料很少,只有多年前的一 ...

  4. echarts在一个折线/柱状图浮窗显示多条数据

    解决问题就在data里面,首先 data里面是可以json数组形式,如官方API上的 name:”“, value:”“,等 value是echart识别折线图的key值.1.来看数据格式 data: ...

  5. flask 中的 werkzeug Local,LocalStack 和 LocalProxy 技术应用

    什么是 Local wsgi 每次请求,会把过程进行抽离无状态话,过程数据存储在本次请求的全局变量中,使用到了Local. Local 作为每次请求的全局命令空间,属于每次请求的私有 LocalSta ...

  6. shiro采坑指南—基础概念与实战

    说明   代码及部分相关资料根据慕课网Mark老师的视频进行整理.   其他资料: shiro官网 基础概念 Authenticate/Authentication(认证)   认证是指检查用户身份合 ...

  7. java socket通讯

    本来是打算验证java socket是不是单线程操作,也就是一次只能处理一个请求,处理完之后才能继续处理下一个请求.但是在其中又发现了许多问题,在编程的时候需要十分注意,今天就拿出来跟大家分享一下. ...

  8. Linux下扫描服务器IP地址是否冲突(arp-scan)

    部署服务突然发现,连接的服务器断开了,因为服务器用户名密码是一样的,所以重新连接后,发现文件变了,跟之前不一样. 猜想是不是ip地址冲突了,两次连接的服务器不同. 网上查找资料说可以用工具扫描.工具: ...

  9. cometoj 茶颜悦色|扫描线+懒惰标记

    传送门 题目描述 茶颜悦色也太好喝了!鸡尾酒在长沙的各种茶颜悦色的店铺中流连忘返.他发现长沙有炒鸡多的茶颜悦色店,走两步就能遇到一家. “方圆一公里能有十家茶颜悦色!”鸡尾酒感叹了起来. 于是他想到了 ...

  10. 拥有 GitHub 开源项目的小伙伴,免费申请 JetBrains 全家桶的全流程详解

    工欲善其事,必先利其器.如果您想要学习 Java.PHP.Ruby.Python.JavaScript.Objective-C..NET 中的任何一种开发技术,国际知名且屡获殊荣的 JetBrains ...