2001年NOIP普及组复赛题解
题目涉及算法:
- 数的计算:动态规划;
- 最大公约数和最小公倍数问题:质因数分解;
- 求先序排列:递归;
- 装箱问题:动态规划(纯0-1背包问题)
数的计算
题目链接:https://www.luogu.org/problem/P1028
这道题目可以用动态规划进行求解。
我们令 \(f[i]\) 表示自然数为 \(i\) 能够生成的数的个数,则:
\(f[i] = 1 + \sum_{j=1}^{n/2} f[j]\)
实现代码如下:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1010;
int n, f[maxn];
int main() {
cin >> n;
for (int i = 1; i <= n; i ++) {
f[i] = 1;
for (int j = 1; j <= i/2; j ++)
f[i] += f[j];
}
cout << f[n] << endl;
return 0;
}
最大公约数和最小公倍数问题
题目链接:https://www.luogu.org/problem/P1029
这道题目虽然名为“最大公约数和最小公倍数问题”,但其实是一道 质因数分解 的问题。
首先,如果P不能整除Q,那么答案肯定为 \(0\) ,直接输出 \(0\) 即可。
其次,我们令 \(n = Q/P\) ,然后对 \(n\) 进行质因数分解,假设对 \(n\) 进行质因数分解的表达式为:
\(n = a_1^{b_1} \times a_2^{b_2} \times \dots \times a_m^{b_m}\)
那么我们知道,对于其中的任意一个 \(a_i\) ,它要么归到 \(x0\) ,要么归到 \(y0\) ,不可能有 \(1\) 个 \(a_i\) 归到 \(x0\) ,而另一个 \(a_i\) 归到 \(y0\) (因为这个时候他们的最大公约数就变成了 \(x0 \times a_i\)) ,所以对于这 \(m\) 个 \(a_i\) ,他们要么都归到 \(x0\) ,要么都归到 \(y0\) ,所以总的方案数就是 \(2^m\) 。
实现代码如下(代码中我用 \(cnt\) 来表示不同的质因数个数):
#include <bits/stdc++.h>
using namespace std;
int n, m, P, Q, cnt;
long long ans = 1;
int main() {
cin >> P >> Q;
if (Q % P) {
puts("0");
return 0;
}
n = Q / P;
m = sqrt(n);
for (int i = 2; i <= m; i ++) {
if (n % i == 0) {
cnt ++;
while (n % i == 0) n /= i;
}
}
if (n > 1) cnt ++;
cout << ( 1LL << cnt ) << endl;
return 0;
}
求先序排列
题目链接:https://www.luogu.org/problem/P1030
这道题目可以用“递归”进行求解。
首先,后续序列的最后一个元素肯定是当前子树的根节点。
我们可以在中序序列里面找到根节点的位置,然后中序序列例根节点左边的子串对应该根节点的左子树,右边的子串对应根节点的右子树。我们递归地进行遍历就可以还原出这棵树。
同时,我们在递归的时候其实也可以直接输出这棵树的先序遍历结果。
实现代码如下:
#include <bits/stdc++.h>
using namespace std;
char zx[10], hx[10]; // zx:中序序列;hx:后序序列
// [L1,R1]对应中序序列的区间范围;
// [L2,R2]对应后序序列的区间范围
void dfs(int L1, int R1, int L2, int R2) {
if (L1 >= R1) {
if (L1 == R1) putchar(zx[L1]);
return;
}
int i;
for (i = L1; i <= R1 && zx[i] != hx[R2]; i ++);
putchar(zx[i]);
int l_len = i - L1, r_len = R1 - i;
dfs(L1, i-1, L2, L2+l_len-1);
dfs(i+1, R1, R2-r_len, R2-1);
}
int main() {
cin >> zx >> hx;
int len = strlen(zx);
dfs(0, len-1, 0, len-1);
return 0;
}
装箱问题
题目链接:https://www.luogu.org/problem/P1049
这道题目是一道纯0-1背包问题。
对于第i件物品,我们令它的体积等于价值,套0-1背包模板能够得到能装进箱子的最大价值。以箱子总体积减去总价值就是箱子的最小的剩余空间。
实现代码如下:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 20020;
int n, V, c, f[maxn];
int main() {
cin >> V >> n;
while (n --) {
cin >> c;
for (int i = V; i >= c; i --)
f[i] = max(f[i], f[i-c] + c);
}
cout << V - f[V] << endl;
return 0;
}
作者:zifeiy
2001年NOIP普及组复赛题解的更多相关文章
- 2010年NOIP普及组复赛题解
题目及涉及的算法: 数字统计:入门题: 接水问题:基础模拟题: 导弹拦截:动态规划.贪心: 三国游戏:贪心.博弈论. 数字统计 题目链接:洛谷 P1179 这道题目是一道基础题. 我们只需要开一个变量 ...
- 2017年NOIP普及组复赛题解
题目涉及算法: 成绩:入门题: 图书管理员:模拟: 棋盘:最短路/广搜: 跳房子:RMQ/二分答案/DP(本人解法). 成绩 题目链接:https://www.luogu.org/problemnew ...
- 2016年NOIP普及组复赛题解
题目涉及算法: 买铅笔:入门题: 回文日期:枚举: 海港:双指针: 魔法阵:数学推理. 买铅笔 题目链接:https://www.luogu.org/problem/P1909 设至少要买 \(num ...
- 2014年NOIP普及组复赛题解
题目涉及算法: 珠心算测验:枚举: 比例简化:枚举: 螺旋矩阵:模拟: 子矩阵:状态压缩/枚举/动态规划 珠心算测验 题目链接:https://www.luogu.org/problem/P2141 ...
- 2013年NOIP普及组复赛题解
题目涉及算法: 计数问题:枚举: 表达式求值:栈: 小朋友的数字:动态规划: 车站分级:最长路. 计数问题 题目链接:https://www.luogu.org/problem/P1980 因为数据量 ...
- 2011年NOIP普及组复赛题解
题目涉及算法: 数字反转:模拟: 统计单词数:模拟: 瑞士轮:模拟/排序: 表达式的值:后缀表达式/DP. 数字反转 题目链接:https://www.luogu.org/problem/P1307 ...
- 2008年NOIP普及组复赛题解
题目涉及算法: ISBN号码:简单字符串模拟: 排座椅:贪心: 传球游戏:动态规划: 立体图:模拟. ISBN号码 题目链接:https://www.luogu.org/problem/P1055 简 ...
- 2005年NOIP普及组复赛题解
题目涉及算法: 陶陶摘苹果:入门题: 校门外的树:简单模拟: 采药:01背包: 循环:模拟.高精度. 陶陶摘苹果 题目链接:https://www.luogu.org/problem/P1046 循环 ...
- 2018年NOIP普及组复赛题解
题目涉及算法: 标题统计:字符串入门题: 龙虎斗:数学题: 摆渡车:动态规划: 对称二叉树:搜索. 标题统计 题目链接:https://www.luogu.org/problem/P5015 这道题目 ...
随机推荐
- web前端学习(三)css学习笔记部分(4)-- CSS选择器详解
4. 元素选择器详解 4.1 元素选择器 4.2 选择器分组 用英文逗号","相连,使用相同的样式表 使用通配符对所有元素进行通用设定. 4.3 类选择器详解 4.3.1. ...
- jeecg Access restriction 问题解决
最近导入新项目,导入所有用到的jar包,发现其中一个引用报错 import com.sun.istack.internal.Nullable; 具体信息如下: Access restriction: ...
- python安装第三方模块
1.pip 安装命令: pip install 模块名由于国外网站不稳定可能会出现超时的情况,我们可以自己指定下载源命令如下临时修改 pip install 模块名 -i https://pypi.t ...
- java jsp j2ee
1. JavaScript用于编写嵌入在网页文档中的程序,它由浏览器负责解释和执行,可以在网页上产生动态的显示效果和实现与用户交互的功能,譬如,让一串文字跟着鼠标移动,让一个图标在网页漂浮移动,验证用 ...
- switch或判断
<?php $num1 = 1; $num2 = 2; function int($num){ switch($num){ case 1: case 2: echo "1或2" ...
- 怎么在 CentOS 6 上配置私有 NPM 仓库?
Sinopia 是一个简单易用的私有 NPM 仓库服务器.在 CentOS 6 上安装时,遇到如下报错(Node 版本 6.9.1) #error This version of node/NAN/v ...
- windows下 python中报错ImportError: No module named 'requests'
原因没有安装requests模块, 可以切换到python的安装目录找到 script文件夹 example: 进入cmd窗口切换到上面的目录直接运营下面两个命令中的一个 1. > Path\p ...
- U盘安装win7 raid设置
需要先安装驱动! 大白菜U盘安装界面有一个选择驱动的选项,选择驱动即可.Intel_ESRT2_Windows_signed_DRV_v16.03.2014.1127
- 【JZOJ4771】【NOIP2016提高A组模拟9.9】爬山
题目描述 国家一级爬山运动员h10今天获得了一张有着密密麻麻标记的地图,在好奇心的驱使下,他又踏上了去爬山的路. 对于爬山,h10有一个原则,那就是不走回头路,于是他把地图上的所有边都标记成了有向边. ...
- Directx11教程(52) 实例(instancing)的简单应用
原文:Directx11教程(52) 实例(instancing)的简单应用 有些时候,我们需要在场景中渲染大量的重复的物体,比如体育场中的观众,森林里面的树木等等,这些物体具有相似的形状,比如很多树 ...