Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html

之前说过中国剩余定理传统解法的条件是m[i]两两互质,所以这题就不能用传统解法了= =

其实还有种方法:

先来看只有两个式子的方程组:

c≡b1 (mod a1)

c≡b2 (mod a2)

变形得c=a1*x+b1,c=a2*x+b2

a1*x-a2*y=b2-b1

可以用扩展欧几里得求出x和y,进而求出c

那么多个式子呢?可以两个两个的迭代求。

比如上面两个式子求完了,求出一个c,不妨先把它记作c1

c1满足上面两式,但对于所有的式子就不一定都满足了。

因此我们把一个新同余式加入方程组:c≡c1 (mod lcm(a1,a2))      //lcm为最小公倍数

然后依次往下迭代就行了。最后解出的c1就是最终解。

如何判断无解?

对于相邻的两行a1、a2、r1、r2,若 (r2-r1) mod (gcd(a1,a2))!=0说明无解

 #include "iostream"
using namespace std;
__int64 a[];
__int64 r[];
int n; __int64 extend_gcd(__int64 a,__int64 b,__int64 &x,__int64 &y){
if (b==){
x=;y=;
return a;
}
else{
__int64 r=extend_gcd(b,a%b,y,x);
y=y-x*(a/b);
return r;
}
} __int64 gcd(__int64 a,__int64 b)
{
if (b==) return a;
return gcd(b,a%b);
} __int64 lcm(__int64 a,__int64 b)
{
__int64 tm=gcd(a,b);
if (tm==) return ;
else return (a*b/tm);
} int main()
{
while (cin>>n)
{
for (int i=;i<=n;i++)
cin>>a[i]>>r[i]; __int64 x,y,x1,c1;
bool sol=true;
for (int i=;i<=n;i++)
{
__int64 a1=a[i-],r1=r[i-];
__int64 a2=a[i],r2=r[i];
__int64 tmp=gcd(a1,a2);
if ((r2-r1)%tmp!=) sol=false; //此处有个问题= =原来我是这样写的,WA了
__int64 tm=extend_gcd(a1,a2,x,y); //__int64 tm=extend_gcd(a1,-a2,x,y)
x1=x*((r2-r1)/tm); //but the original equation is a1*x1-a2*x2=b2-b1
__int64 rq=a2/tm; //__int64 rq=-a2/tm
x1=(x1%rq+rq)%rq; //去掉a2的负号就A了,What a fuck!!!
//个人猜想是因为gcd(a,b)和gcd(a,-b)结果是一样的,
//而且此处需要的是非负解,结果就YY对了
c1=a1*x1+r1;
r[i]=c1;
a[i]=lcm(a1,a2);
// cout<<r[i]<<" "<<a[i]<<endl;
}
//cout<<c1<<endl;
__int64 ans=c1;
if (!sol) cout<<"-1"<<endl;
else cout<<ans<<endl;
} return ;
}

至于负号那个地方有个题hdu 1576,和本题一个情况。把负号YY掉就对了= =

poj 2891 扩展欧几里得迭代解同余方程组的更多相关文章

  1. POJ 2891 Strange Way to Express Integers | exGcd解同余方程组

    题面就是让你解同余方程组(模数不互质) 题解: 先考虑一下两个方程 x=r1 mod(m1) x=r2 mod (m2) 去掉mod x=r1+m1y1   ......1 x=r2+m2y2   . ...

  2. poj 2142 扩展欧几里得解ax+by=c

    原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...

  3. poj 1061 扩展欧几里得解同余方程(求最小非负整数解)

    题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...

  4. poj 1061(扩展欧几里得定理求不定方程)

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...

  5. 扩展欧几里得(exgcd)与同余详解

    exgcd入门以及同余基础 gcd,欧几里得的智慧结晶,信息竞赛的重要算法,数论的...(编不下去了 讲exgcd之前,我们先普及一下同余的性质: 若,那么 若,,且p1,p2互质, 有了这三个式子, ...

  6. poj 2115 扩展欧几里得

    题目链接:http://poj.org/problem?id=2115 题意: 给出一段循环程序,循环体变量初始值为 a,结束不等于 b ,步长为 c,看要循环多少次,其中运算限制在 k位:死循环输出 ...

  7. The Balance POJ 2142 扩展欧几里得

    Description Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a dose of ...

  8. POJ 1061 扩展欧几里得

    #include<stdio.h> #include<string.h> typedef long long ll; void gcd(ll a,ll b,ll& d, ...

  9. 扩展欧几里得,解线性同余方程 逆元 poj1845

    定理:对于任意整数a,b存在一堆整数x,y,满足ax+by=gcd(a,b) int exgcd(int a,int b,int &x,int &y){ ){x=,y=;return ...

随机推荐

  1. git冲突解决办法

    git错误error: Your local changes to the following files would be overwritten 然后可以使用git diff -w +文件名 来确 ...

  2. (copy)C#时间日期操作

    copy to:http://www.cnblogs.com/loveme123/archive/2012/06/27/2565547.html  一.C# 日期格式 DateTime dt = Da ...

  3. AMAP

    ViewController.m #import "ViewController.h" //地图显示需要的头文件 #import <MAMapKit/MAMapKit.h&g ...

  4. 工作者队列原理解析(后台writeback)

    每一个CPU都会有两个(或者一个?)kwoker线程. kwoker线程,说白了就是尽量减少进程的数目,为了什么呢?因为线程数据太多的话,调度的成本比较高,占用太多的系统资源,所以这里是进程的一个简化 ...

  5. Java中的Random()函数

    今天在做Java练习的时候注意到了Java里面的一个随机函数——Random,刚开始只是知道这个函数具有随机取值的作用,于是上网搜索了资料一番,做了一下一些关于Random函数的总结:   Java中 ...

  6. 房产企业如何借助K2 BPM脱颖而出?

    点击这里,查看完整版房地产行业的流程管理解决方案.

  7. 浅谈设计模式--单例模式(Singleton Pattern)

    题外话:好久没写blog,做知识归纳整理了.本来设计模式就是个坑,各种文章也写烂了.不过,不是自己写的东西,缺少点知识的存在感.目前还没做到光看即能记住,得写.所以准备跳入设计模式这个大坑. 开篇先贡 ...

  8. 流媒体技术之RTSP

    流媒体技术之RTSP 标签: RTSP技术移动流媒体 2016-06-19 18:48 38人阅读 评论(0) 收藏 举报  分类: 流媒体相关技术 版权声明:本文为博主原创文章,未经博主允许不得转载 ...

  9. ios 定位 航向检测

    // ViewController.m // CoreLocation框架的基本使用—定位 // 注意 点: 1.设置地位可用 2. 设置允许本程序定位(对弹出的框,允许即可) 3. 为模拟器 设置位 ...

  10. Android nDrawer

    GitHub上一款流行的侧滑,附上自己as编译过的源码http://download.csdn.net/detail/lj419855402/8559039. 留个纪念,说不定以后用得到. 依赖一个l ...