1.概述

  Flink 1.1.0 版本已经在官方发布了,官方博客于 2016-08-08 更新了 Flink 1.1.0 的变动。在这 Flink 版本的发布,添加了 SQL 语法这一特性。这对于业务场景复杂,依赖于 SQL 来分析统计数据,算得上是一个不错的福利。加上之前有同学和朋友邮件中提到,Flink 官方给的示例运行有困难,能否整合一下 Flink 的案例。笔者通过本篇博客来解答一下相关疑问。

2.内容

2.1 集群部署

  首先,集群的部署需要 JDK 环境。下载 JDK 以及配置 JAVA_HOME 环境,这里就不详述了,比较简单。然后,我们去下载 Flink 1.1.0 的安装包,进入到下载页面,如下图所示:

  这里需要注意的是,Flink 集群的部署,本身不依赖 Hadoop 集群,如果用到 HDFS 或是 HBase 中的存储数据,就需要选择对应的 Hadoop 版本。大家可以根据 Hadoop 集群的版本,选择相应的 Flink 版本下载。

  下载好 Flink 1.1.0 后,按以下步骤进行:

  • 解压 Flink 安装包到 Master 节点
tar xzf flink-*.tgz
cd flink-*
  • 配置 Master 和 Slaves
vi $FLINK_HOME/conf/master
vi $FLINK_HOME/conf/slaves
  • 分发
scp -r flink-1.1. hadoop@dn2:/opt/soft/flink
scp -r flink-1.1. hadoop@dn3:/opt/soft/flink

  这里只用了2个 slave 节点。另外,在 flink-conf.yaml 文件中,可以按需配置,较为简单。就不多赘述了。

  • 启动集群
bin/start-cluster.sh

  注意,这里没有使用 YARN 来启动集群,若是需要使用 YARN 启动集群,可以参考官方文档进行启动。地址

  Flink 集群启动后,系统有一个 WebUI 监控界面,如下图所示:

2.2 案例

  这里,我们使用 Flink SQL 的 API 来运行一个场景,对一个销售表做一个聚合计算。这里,笔者将实现代码进行了分解,首先是获取操作 Flink 系统的对象,如下所示:

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
BatchTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env);

  接着是读取数据源,并注册为表,如下所示:

CsvTableSource csvTableSource = new CsvTableSource(inPath, new String[] { "trans_id", "part_dt", "lstg_format_name", "leaf_categ_id", "lstg_site_id", "slr_segment_cd", "price", "item_count", "seller_id" },
new TypeInformation<?>[] { Types.LONG(), Types.STRING(), Types.STRING(), Types.LONG(), Types.INT(), Types.INT(), Types.FLOAT(), Types.LONG(), Types.LONG() });
tableEnv.registerTableSource("user", csvTableSource);
Table tab = tableEnv.scan("user");

  这里 inPath 使用了 HDFS 上的数据路径。类型可以在 Hive 中使用 desc 命令查看该表的类型。然后,将“表”转化为数据集,如下所示:

DataSet<KylinSalesDomain> ds = tableEnv.toDataSet(tab, KylinSalesDomain.class);

tableEnv.registerDataSet("user2", ds, "trans_id,part_dt,lstg_format_name,leaf_categ_id,lstg_site_id,slr_segment_cd,price,item_count,seller_id");

Table result = tableEnv.sql("SELECT lstg_format_name as username,SUM(FLOOR(price)) as total FROM user2 group by lstg_format_name");

  最后,对结果进行存储,这里笔者将结果存在了 HDFS 上。如下所示:

TableSink<?> sink = new CsvTableSink(outPath, "|");

result.writeToSink(sink);

env.setParallelism(1);
env.execute("Flink Sales SUM");

  注意,这里并发数是可以设置的,通过 setParallelism 方法来设置并发数。

  完整示例,如下所示:

try {
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
BatchTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env); CsvTableSource csvTableSource = new CsvTableSource(args[0], new String[] { "trans_id", "part_dt", "lstg_format_name", "leaf_categ_id", "lstg_site_id", "slr_segment_cd", "price", "item_count", "seller_id" },
new TypeInformation<?>[] { Types.LONG(), Types.STRING(), Types.STRING(), Types.LONG(), Types.INT(), Types.INT(), Types.FLOAT(), Types.LONG(), Types.LONG() });
tableEnv.registerTableSource("user", csvTableSource);
Table tab = tableEnv.scan("user"); DataSet<KylinSalesDomain> ds = tableEnv.toDataSet(tab, KylinSalesDomain.class); tableEnv.registerDataSet("user2", ds, "trans_id,part_dt,lstg_format_name,leaf_categ_id,lstg_site_id,slr_segment_cd,price,item_count,seller_id"); Table result = tableEnv.sql("SELECT lstg_format_name as username,SUM(FLOOR(price)) as total FROM user2 group by lstg_format_name"); TableSink<?> sink = new CsvTableSink(args[1], "|");
// write the result Table to the TableSink
result.writeToSink(sink); // execute the program
env.setParallelism(1);
env.execute("Flink Sales SUM");
} catch (Exception e) {
e.printStackTrace();
}

  最后,我们将应用提交到 Flink 集群。如下所示:

flink run flink_sales_sum.jar hdfs://master:8020/user/hive/warehouse/kylin_sales/DEFAULT.KYLIN_SALES.csv hdfs://master:8020/tmp/result3

3.Hive 对比

  同样的语句,在 Hive 下运行之后,与在 Flink 集群下运行之后,结果如下所示:

  • Hive 运行结果:

  • Flink 运行结果:

  通过 WebUI 监控界面观察,任务在 Flink 集群中运行所花费的时间在 2s 以内。其运行速度是比较具有诱惑力的。

4.总结

  总体来说,Flink 集群的部署较为简单,其 SQL 的 API 编写需要对官方的文档比较熟悉,需要注意的是,在本地运行 Flink 代码,若是要读取远程 HDFS 文件,那么获取 Flink 对象操作环境,需要采用远程接口(HOST & PORT),或者在本地部署一个开发集群环境,将远程数据源提交到本地 Flink 集群环境运行。若是,读取本地文件,则不需要。其中的原因是当你以集群的方式运行,Flink 会检查本地是否有 Flink 集群环境存在,如若不存在,则会出现远程数据源(如:HDFS 路径地址无法解析等错误)。

5.结束语

  这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

Flink 案例整合的更多相关文章

  1. 《实战突击:PHP项目开发案例整合(第2版)(含DVD光盘1张)》

    <实战突击:PHP项目开发案例整合(第2版)(含DVD光盘1张)> 基本信息 作者: 徐康明    辛洪郁 出版社:电子工业出版社 ISBN:9787121221378 上架时间:2014 ...

  2. Flink+Kafka整合的实例

    Flink+Kafka整合实例 1.使用工具Intellig IDEA新建一个maven项目,为项目命名为kafka01. 2.我的pom.xml文件配置如下. <?xml version=&q ...

  3. FLINK 案例分析

    基于Flink流处理的动态实时超大规模用户行为分析 https://zhuanlan.zhihu.com/p/31548501 基于Flink流处理的动态实时超大规模用户行为分析 https://zh ...

  4. Vue(二十二)vuex小案例(官网计数案例整合)

    1.使用 vue-cli 创建项目(具体操作可以参考前面的文章) ... 2.下载 vuex - npm install vuex -S 3.将 vuex 添加到项目中 (1)在项目中创建store文 ...

  5. SSM案例整合踩的一些坑

    一.出现错误:Cannot convert value of type [java.lang.String] to required type [javax.sql.DataSource] for p ...

  6. Flink articles

    http://ictlabs-summer-school.sics.se/2015/slides/flink-advanced.pdf http://henning.kropponline.de/20 ...

  7. Flink集群模式部署及案例执行

    一.软件要求 Flink在所有类UNIX的环境[例如linux,mac os x和cygwin]上运行,并期望集群由一个 主节点和一个或多个工作节点组成.在开始设置系统之前,确保在每个节点上都安装了一 ...

  8. flink实时数仓从入门到实战

    第一章.flink实时数仓入门 一.依赖 <!--Licensed to the Apache Software Foundation (ASF) under oneor more contri ...

  9. 基于docker构建flink大数据处理平台

    https://www.cnblogs.com/1ssqq1lxr/p/10417005.html 由于公司业务需求,需要搭建一套实时处理数据平台,基于多方面调研选择了Flink. 初始化Swarm环 ...

随机推荐

  1. eclipse 导入Maven项目的问题

      http://my.oschina.net/wiselyming/blog/164470

  2. js 操作map对象

    转自:http://smallvq123.javaeye.com/blog/823923 /* * Map对象,实现Map功能 * * * size() 获取Map元素个数 * isEmpty() 判 ...

  3. jsonp与ajax

    jsonp思维导图:1.定义2.为什么用3.json原理4.优缺点何为跨域?何为JSONP?JSONP技术能实现什么?是否有必要使用JSONP技术? JSON和JSONP??虽然只有一个字母的差别,但 ...

  4. Windows上一步一步CoreRun

    起步只有3个文件:CoreRun.exe, coreclr.dll, mscorlib.dll, HelloWorld.exe 运行命令:CoreRun HelloWorld.exe 出错: Asse ...

  5. NBIbatis 基础框架

    基础框架 NBIbatis 为真实在用的系统中剥离出的一个ibatis.net应用框架,目的在于通过此项目让软件工程师集中关注表现层及业务规则编写. 通过数据访问和业务规则可快速搭建不同表现形式的网站 ...

  6. AngularJS快速入门指南02:介绍

    AngularJS是一个JavaScript框架.它可以通过<script>标记被添加到HTML页面中. AngularJS通过指令对HTML属性进行了扩展,然后通过表达式将数据绑定到HT ...

  7. JQuery以JSON方式提交数据到服务端

    JQuery将Ajax数据请求进行了封装,从而使得该操作实现起来容易许多.以往我们要写很多的代码来实现该功能,现在只需要调用$.ajax()方法,并指明请求的方式.地址.数据类型,以及回调方法等.下面 ...

  8. Linux-vmware tools安装与cdrom挂载

    前述 昨天想直接复制虚拟机centos系统中命令行的内容到主机的txt文档上进行保存,发现不能实现虚拟机与主机之间的直接通讯,后来查资料发现原来是由于我的虚拟机没有安装vwmare tools的缘故. ...

  9. AngularJS 源码分析3

    本文接着上一篇讲 上一篇地址 回顾 上次说到了rootScope里的$watch方法中的解析监控表达式,即而引出了对parse的分析,今天我们接着这里继续挖代码. $watch续 先上一块$watch ...

  10. paip.调试js 查看元素事件以及事件断点

    paip.调试js  查看元素事件以及事件断点 ff 26 +firebug 查看不出来.. 360 ,虽然也是chrome 基础,但是开发工具烂阿,也是显示不出来.. 作者Attilax  艾龙,  ...