ZOJ2930 The Worst Schedule(最小割)
题目大概说有n个任务,每个任务可以提前或推迟,提前或推迟各有一定的费用,有的任务一旦推迟另一个任务也必须推迟,问怎么安排任务使花费最少,且最少花费的条件下提前的任务数最多能多少。
问题就是要把各个任务分成两个集合。这么建容量网络求最小的S-T割:源点向各个任务连容量为提前的费用的边,各个任务向汇点连容量为推迟的费用的边,如果A任务推迟B任务也必须推迟那么连A到B容量为INF的边。
这样求最小割就是最小的花费。S集合的点可以看作是选择推迟的任务,T集合看作是选择提前的任务,画画图就知道了。
而第二问。。结论就是。。设从源点沿非关键边floodfill得到的点数为n1(不含源点),从汇点反着floodfill得到的点数为n2(不含汇点),T中点最多的数目就是n2+(n-n1-n2),即n-n1。
和判定最小割唯一性类似做法。。
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 222
#define MAXM 222*444 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
}
bool vis[MAXN];
int dfs(int u){
vis[u]=;
int res=(u!=vs);
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(vis[v] || edge[i].cap==edge[i].flow) continue;
res+=dfs(v);
}
return res;
}
int main(){
int n,m,a,b;
while(~scanf("%d",&n) && n){
vs=; vt=n+; NV=vt+; NE=;
memset(head,-,sizeof(head));
for(int i=; i<=n; ++i){
scanf("%d",&a);
addEdge(vs,i,a);
}
for(int i=; i<=n; ++i){
scanf("%d",&a);
addEdge(i,vt,a);
}
scanf("%d",&m);
while(m--){
scanf("%d%d",&a,&b);
addEdge(a,b,INF);
}
printf("%d ",ISAP());
memset(vis,,sizeof(vis));
printf("%d\n",n-dfs(vs));
}
return ;
}
ZOJ2930 The Worst Schedule(最小割)的更多相关文章
- BZOJ 1391: [Ceoi2008]order [最小割]
1391: [Ceoi2008]order Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1509 Solved: 460[Submit][Statu ...
- BZOJ-2127-happiness(最小割)
2127: happiness(题解) Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1806 Solved: 875 Description 高一 ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- BZOJ3438 小M的作物(最小割)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...
- 最大流-最小割 MAXFLOW-MINCUT ISAP
简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...
- bzoj1412最小割
太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...
- 【BZOJ1497】[NOI2006]最大获利 最小割
裸的最小割,很经典的模型. 建图:要求总收益-总成本最大,那么将每条弧与源点相连,流量为成本,每个收益与汇点相连,流量为收益,然后每条弧与它所能到达的收益相连,流量为inf. 与源点相连的是未被选中的 ...
- 二分图&网络流&最小割等问题的总结
二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...
- CQOI 2016 不同的最小割
题目大意:一个无向图,求所有点对不同的最小割种类数 最小割最多有n-1个,这n-1个最小割构成一个最小割树 分治法寻找n-1个最小割.对于当前点集X,任选两点为ST做最小割,然后找出与S相连的所有点和 ...
随机推荐
- search in 2d matrix and serach minimum in rotated array
import java.io.*; import java.lang.reflect.Array; import java.util.Arrays; import java.util.Collecti ...
- 工具推荐:2016年最佳的15款Android黑客工具
黑客技术,曾被认为是专家的专有领域,但随着技术的崛起和移动安全领域的进步,黑客技术已经变得越来越普遍.随着人们越来越依赖于智能手机和其它的便携式设备来完成他们的日常活动,我们有必要了解一些Androi ...
- ZJOI Day 2 游记
---恢复内容开始--- 去ZJOI Day 2打了一会酱油...各种神犇大爷都来屠,南外的小朋友也来屠我们了真是感动...没有看到毛爷爷真是可惜.. Day[-1] 早上还在上课,吃完中饭立马跑去找 ...
- 2014-08-07 SSDB 使用 rocksdb 引擎
http://www.ideawu.net/blog/archives/824.html 为了满足各位对 Facebook 出品的 rocksdb 的爱好, SSDB 数据库也可以使用 rocksdb ...
- 使用msgfmt编译多语言文件
msgfmt --statistics --verbose -o django.mo django.po
- poj 1328
http://poj.org/problem?id=1328 题意:题目大概意思就是有一群孤岛,想要用雷达来监视这些岛屿,但雷达的范围是有限的,所以需要多个雷达,题目就是要你解决最少需要几个雷达,注意 ...
- SQL— CONCAT(字符串连接函数)
有的时候,我们有需要将由不同栏位获得的资料串连在一起.每一种资料库都有提供方法来达到这个目的: MySQL: CONCAT() Oracle: CONCAT(), || SQL Server: + C ...
- iOS tableview 选中Cell后的背景颜色和文字颜色
做下记录,备忘 改文字颜色其实是UILabel的属性,改背景颜色是cell的属性,都和tableview无关. cell.textLabel.textColor = BAR_COLOR; cell.t ...
- mysql工具
MySQL工具汇总 收录了MySQL相关有用的工具.工具包含:性能测试,状态分析,SQL路由等方面 本文汇总了和MySQL运维开发相关的所有工具,并会持续更新 工具套件集 percona-toolki ...
- DP:Sumsets(POJ 2229)
数的集合问题 题目大意:给定你一个整数m,你只能用2的k次幂来组合这个数,问你有多少种组合方式? 这一题一看,天啦太简单了,完全背包?是不是? 不过的确这一题可以用完全背包来想,但是交题绝对是TLE ...