ZOJ2930 The Worst Schedule(最小割)
题目大概说有n个任务,每个任务可以提前或推迟,提前或推迟各有一定的费用,有的任务一旦推迟另一个任务也必须推迟,问怎么安排任务使花费最少,且最少花费的条件下提前的任务数最多能多少。
问题就是要把各个任务分成两个集合。这么建容量网络求最小的S-T割:源点向各个任务连容量为提前的费用的边,各个任务向汇点连容量为推迟的费用的边,如果A任务推迟B任务也必须推迟那么连A到B容量为INF的边。
这样求最小割就是最小的花费。S集合的点可以看作是选择推迟的任务,T集合看作是选择提前的任务,画画图就知道了。
而第二问。。结论就是。。设从源点沿非关键边floodfill得到的点数为n1(不含源点),从汇点反着floodfill得到的点数为n2(不含汇点),T中点最多的数目就是n2+(n-n1-n2),即n-n1。
和判定最小割唯一性类似做法。。
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 222
#define MAXM 222*444 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
}
bool vis[MAXN];
int dfs(int u){
vis[u]=;
int res=(u!=vs);
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(vis[v] || edge[i].cap==edge[i].flow) continue;
res+=dfs(v);
}
return res;
}
int main(){
int n,m,a,b;
while(~scanf("%d",&n) && n){
vs=; vt=n+; NV=vt+; NE=;
memset(head,-,sizeof(head));
for(int i=; i<=n; ++i){
scanf("%d",&a);
addEdge(vs,i,a);
}
for(int i=; i<=n; ++i){
scanf("%d",&a);
addEdge(i,vt,a);
}
scanf("%d",&m);
while(m--){
scanf("%d%d",&a,&b);
addEdge(a,b,INF);
}
printf("%d ",ISAP());
memset(vis,,sizeof(vis));
printf("%d\n",n-dfs(vs));
}
return ;
}
ZOJ2930 The Worst Schedule(最小割)的更多相关文章
- BZOJ 1391: [Ceoi2008]order [最小割]
1391: [Ceoi2008]order Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1509 Solved: 460[Submit][Statu ...
- BZOJ-2127-happiness(最小割)
2127: happiness(题解) Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1806 Solved: 875 Description 高一 ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- BZOJ3438 小M的作物(最小割)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...
- 最大流-最小割 MAXFLOW-MINCUT ISAP
简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...
- bzoj1412最小割
太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...
- 【BZOJ1497】[NOI2006]最大获利 最小割
裸的最小割,很经典的模型. 建图:要求总收益-总成本最大,那么将每条弧与源点相连,流量为成本,每个收益与汇点相连,流量为收益,然后每条弧与它所能到达的收益相连,流量为inf. 与源点相连的是未被选中的 ...
- 二分图&网络流&最小割等问题的总结
二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...
- CQOI 2016 不同的最小割
题目大意:一个无向图,求所有点对不同的最小割种类数 最小割最多有n-1个,这n-1个最小割构成一个最小割树 分治法寻找n-1个最小割.对于当前点集X,任选两点为ST做最小割,然后找出与S相连的所有点和 ...
随机推荐
- LR监控Windows资源
1.监控准备: 监控方: 1)安装tcp/ip协议下的netbios 2)用administrator登录 被监控方: 1)被监控的Windows开启两个服务: Remote ProcedureCal ...
- java笔记--反射机制之基础总结与详解
一.反射之实例化Class类的5种方式: java的数据类型可以分为两类,即引用类型和原始类型(即基本数据类型). 对于每种类型的对象,java虚拟机会实例化不可变的java.lang.Class对象 ...
- HDU 1018 Big Number (数学题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1018 解题报告:输入一个n,求n!有多少位. 首先任意一个数 x 的位数 = (int)log10(x ...
- Linux常用指令(持续更新)
(这些文章都是从我的个人主页上粘贴过来的,大家也可以访问我的主页 www.iwangzheng.com) PP真的是一位很有姿势的程序猿,有这样的邻居真好,榜样啊. pwd 当前路径 df -kh ...
- hiho一下 第九十七周 数论六·模线性方程组
题目1 : 数论六·模线性方程组 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Ho:今天我听到一个挺有意思的故事! 小Hi:什么故事啊? 小Ho:说秦末,刘邦的将军 ...
- call_user_func_array使用原型
If you need to call object and class methods in PHP < 4.0.4, the following code ought to do the t ...
- sharepoint读取启用了追加功能的多行文本的历史版本记录
当建立多行文本栏时,有个功能就是"追加对现有文本所做的更改",这个功能启用后,这个多行文本就只运行追加内容而不允许修改以前提交的内容.常常被应用在多个用户之间的协作.问题的追踪等记 ...
- 28. 字符串的全排列之第2篇[string permutation with repeating chars]
[本文链接] http://www.cnblogs.com/hellogiser/p/string-permutation-with-repeating-chars.html [题目] 输入一个字符串 ...
- 快速排序模板qsort(转载)
qsort 用 法: void qsort(void *base, int nelem, int width, int (*fcmp)(const void *,const void *)); 各 ...
- [Android Pro] proguard.cfg 配置文件
转载自:http://my.oschina.net/zhangzhihao/blog/72393 # ------------------------------------- # android 原 ...