题目链接:【被和谐】

题目大意:对于一棵树$(V,E)$,对于$S\subset V$,$f(S)$为点集$S$的导出子图的边数。求$\sum_{S\subset V}f(S)^k$

这里的导出子图说的是,点集为S,边集为$\{(u,v)\in E|u,v\in S\}$的一个子图。


看到这个$k$次方,马上用斯特林数。

$$ans=\sum_{S\subset V}f(S)^k=\sum_{i=0}^ki!S(k,i)\sum_{S\subset V}{f(S)\choose i}$$

然后考虑怎么求后面那个式子。

这个式子表示在$S$的导出子图里面选$i$条边的方案数,然后就可以树形dp了

设$dp_{x,s,0/1}$表示在以$x$为根的子树内部,选择$s$条边,$x$是否$\in S$的答案。

在新加上一个$x$的子树$v$的时候,$S$只有原来只有新的子树的情况直接加上就行。

还有合在一起的情况,设原来的子树有$j$条边,$v$里面有$k$条边。

则$$dp[x][j+k][0]+=(dp[v][k][0]+dp[v][k][1])*dp[x][j][0]$$$$dp[x][j+k][1]+=(dp[v][k][0]+dp[v][k][1]+[k\not= 0]dp[v][k-1][1])*dp[x][j][1]$$

上面那里为什么要加$dp[v][k-1][1]$呢?因为这时$x$和$v$都在点集里,可以选择$(x,v)$这条边。

注意合在一起的情况还要统计进答案里。

而且由于会出现贡献到自己的情况,所以要用一个辅助数组来存储。

 #include<cstdio>
#include<cstring>
#define Rint register int
using namespace std;
typedef long long LL;
const int N = , mod = ;
int n, m, K, head[N], to[N << ], nxt[N << ], size[N];
inline void add(int a, int b){
static int cnt = ;
to[++ cnt] = b; nxt[cnt] = head[a]; head[a] = cnt;
}
LL dp[N][][], f[][], ans[], S[][];
inline void dfs(int x, int fa){
size[x] = ;
dp[x][][] = ; dp[x][][] = ; ++ ans[];
for(Rint i = head[x];i;i = nxt[i])
if(to[i] != fa){
dfs(to[i], x);
memcpy(f, dp[x], sizeof f);
for(Rint j = ;j <= K && j <= size[to[i]];j ++)
f[j][] = (f[j][] + dp[to[i]][j][] + dp[to[i]][j][]) % mod;
for(Rint j = ;j <= K && j <= size[x];j ++)
for(Rint k = ;k <= K - j && k <= size[to[i]];k ++){
LL S = (dp[to[i]][k][] + dp[to[i]][k][]) % mod;
LL s1 = dp[x][j][] * S % mod, s2 = dp[x][j][] * (S + (k ? dp[to[i]][k - ][] : )) % mod;
f[j + k][] = (f[j + k][] + s1) % mod;
f[j + k][] = (f[j + k][] + s2) % mod;
ans[j + k] = (ans[j + k] + s1 + s2) % mod;
}
memcpy(dp[x], f, sizeof f);
size[x] += size[to[i]];
}
}
int main(){
scanf("%d%d%d", &n, &m, &K);
for(Rint i = ;i < n;i ++){
int a, b;
scanf("%d%d", &a, &b);
add(a, b); add(b, a);
}
dfs(, );
S[][] = ;
for(Rint i = ;i <= K;i ++)
for(Rint j = ;j <= i;j ++)
S[i][j] = (S[i - ][j - ] + S[i - ][j] * j) % mod;
LL fac = , res = ;
for(Rint i = ;i <= K;i ++){
fac = fac * i % mod;
res = (res + fac * S[K][i] % mod * ans[i] % mod) % mod;
}
printf("%lld", res);
}

[GDOI2018]滑稽子图的更多相关文章

  1. GDOI2018 滑稽子图 [斯特林数,树形DP]

    传送门并没有 思路 见到那么小的\(k\)次方,又一次想到斯特林数. \[ ans=\sum_{T} f(T)^k = \sum_{i=0}^k i!S(k,i)\sum_{T} {f(T)\choo ...

  2. 【gdoi2018 day2】第二题 滑稽子图(subgraph)(性质DP+多项式)

    题目大意 [gdoi2018 day2]第二题 滑稽子图(subgraph) 给你一颗树\(T\),以及一个常数\(K\),对于\(T\)的点集\(V\)的子集\(S\). 定义\(f(S)\)为点集 ...

  3. 【gdoi2018 day2】第二题 滑稽子图

    题意: 给出一棵树.设\(E\)表示边集,\(V\)表示点集,\(S\)为\(V\)的一个子集. \(f(S)=|(u,v)|(u,v)\in E \ \&\&\ u\in V\ \& ...

  4. 【GDOI】2018题目及题解(未写完)

    我的游记:https://www.cnblogs.com/huangzihaoal/p/11154228.html DAY1 题目 T1 农场 [题目描述] [输入] 第一行,一个整数n. 第二行,n ...

  5. scrapy 也能爬取妹子图?

    目录 前言 Media Pipeline 启用Media Pipeline 使用 ImgPipeline 抓取妹子图 瞎比比前言 我们在抓取数据的过程中,除了要抓取文本数据之外,当然也会有抓取图片的需 ...

  6. GDOI2018游记

    前言 不知怎的,本蒟蒻居然拿到了GDOI参赛名额 于是乎,我稀里糊涂地跟着诸位大佬屁颠屁颠地来到了阔别已久的中山一中 腐败difficult and interesting的GDOI比赛就这样开始了. ...

  7. 最大半连通子图 bzoj 1093

    最大半连通子图 (1.5s 128MB) semi [问题描述] 一个有向图G = (V,E)称为半连通的(Semi-Connected),如果满足:∀ u, v ∈V,满足u->v 或 v - ...

  8. [Java]使用HttpClient实现一个简单爬虫,抓取煎蛋妹子图

    第一篇文章,就从一个简单爬虫开始吧. 这只虫子的功能很简单,抓取到”煎蛋网xxoo”网页(http://jandan.net/ooxx/page-1537),解析出其中的妹子图,保存至本地. 先放结果 ...

  9. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

随机推荐

  1. 教你一招:解决Win 10安装软件时提示:文件系统错误 (-1073740940)

    1.win+R输入 gpedit.msc 2.左边计算机配置 windows设置——安全设置——本地策略——安全选项 3.在安全选项右边选择 用户账户控制:管理员批准模式中管理员的提升权限提示的行为, ...

  2. hdoj:2029

    #include <iostream> #include <string> using namespace std; bool isPalindromes(string s) ...

  3. 第三百九十八节,Django+Xadmin打造上线标准的在线教育平台—生产环境部署CentOS6.5系统环境设置

    第三百九十八节,Django+Xadmin打造上线标准的在线教育平台—生产环境部署CentOS6.5系统环境设置 1.Linux安装配置 注意事项: 虚拟机网卡桥接模式 不要拨VPN 如果,网络怎么都 ...

  4. Excel公式中使用动态计算的地址

    例:统计A列第四行开始,到公式所在行的前一行的非空白行的个数: =COUNTA(A4:INDIRECT(ADDRESS(ROW()-,COLUMN())))

  5. spring boot mybatis 整合教程

    本项目使用的环境: 开发工具:Intellij IDEA 2017.1.3 springboot: 1.5.6 jdk:1.8.0_161 maven:3.3.9 额外功能 PageHelper 分页 ...

  6. MVC和普通三层架构的区别

    MVC和普通三层架构的区别 其中这里的模型(Model)和视图(View )是完全区别于三层架构中的模型(Model)和视图(View)的. MVC 1)MVC中的模型(Model)指的是数据模型,用 ...

  7. HTTP协议中GET和POST方法的区别

    转载 通常的理解 w3schools关于这个问题的解答:HTTP 方法:GET 对比 POST 列出了一般的理解: 方法 GET POST 后退按钮/刷新 无害 数据会被重新提交(浏览器应该告知用户数 ...

  8. SVN创建分支主干策略

    本篇目录 前言 SVN分支管理策略 VisualSVN Server TortoiseSVN客户端 Repository的创建 Check out trunk创建新项目MyProject trunk更 ...

  9. @ControllerAdvice注解的使用

    package com.vcredit.ddcash.monitor.controller; import com.vcredit.ddcash.monitor.model.dto.Response; ...

  10. ros查看摄像头是否打开正常

    使用rqt_image_view命令,查看摄像头是否正常输出图像