HDU 2191 - 单调队列优化多重背包
题目:
传送门呀传送门~
Problem Description
急!灾区的食物依然短缺!
为了挽救灾区同胞的生命,心系灾区同胞的你准备自己采购一些粮食支援灾区,现在假设你一共有资金n元,而市场有m种大米,每种大米都是袋装产品,其价格不等,并且只能整袋购买。
请问:你用有限的资金最多能采购多少公斤粮食呢?
后记:
人生是一个充满了变数的生命过程,天灾、人祸、病痛是我们生命历程中不可预知的威胁。
月有阴晴圆缺,人有旦夕祸福,未来对于我们而言是一个未知数。那么,我们要做的就应该是珍惜现在,感恩生活——
感谢父母,他们给予我们生命,抚养我们成人;
感谢老师,他们授给我们知识,教我们做人
感谢朋友,他们让我们感受到世界的温暖;
感谢对手,他们令我们不断进取、努力。
同样,我们也要感谢痛苦与艰辛带给我们的财富~
Input
输入数据首先包含一个正整数C,表示有C组测试用例,每组测试用例的第一行是两个整数n和m(1<=n<=100, 1<=m<=100),分别表示经费的金额和大米的种类,然后是m行数据,每行包含3个数p,h和c(1<=p<=20,1<=h<=200,1<=c<=20),分别表示每袋的价格、每袋的重量以及对应种类大米的袋数。
Output
对于每组测试数据,请输出能够购买大米的最多重量,你可以假设经费买不光所有的大米,并且经费你可以不用完。每个实例的输出占一行。
Sample Input
1
8 2
2 100 4
4 100 2
Sample Output
400
做法:
设\(dp[j]\)表示在\(j\)体积时能够获得的最大收益
设\(j=p \cdot v[i] + q\),其中\(p = j \ / \ v[i]; \quad q = j \% v[i];\)
不难写出:
\(dp[j]=max (dp[j-k \cdot v[i]]+k \cdot w[i])\)
\(\ \ \ \ \ \ \ \,= max (dp[p \cdot v[i] + q - k \cdot v[i]]+k \cdot w[i])\)
\(\ \ \ \ \ \ \ \,= max (dp[(p-k) \cdot v[i]+q]+k \cdot w[i])\)
其中\(k \in [0,min(p,c[i])]\),设$h = p - k $,所以 \(h \in [p-min(p,c[i]),p]\)
$dp[j] = max (dp[h \cdot v[i]+q]+(p-h) \cdot w[i]) \(
\)\ \ \ \ \ \ \ ,= max (dp[h \cdot v[i]+q]-h\cdot w[i]) + p \cdot w[i]$
观察得到,最后的式子里,是由与\(h\)有关的一堆东西取max,再加上与\(p\)有关的一部分,而前面那一堆东西仅与\(h\)有关,而与\(p\)无关。
于是考虑用优先队列来优化。
for(Rint i=1;i<=n;i++){
read(v[i]);read(w[i]);read(c[i]);//读入第i个物品的体积v,价值w,个数c
for(Rint q=0;q<v[i];q++){//首先枚举余数
deque<int> Q;//定义双端队列
for(Rint p=0;p*v[i]+q<=m;p++){//枚举p,已以达到枚举j的目的,j其实就是p*v[i]+q
//这里的p其实就是上文的h,先枚举着,下面会将不在[p-min(p,c[i]),p]范围内的h舍去
val[p]=dp[p*v[i]+q]-p*w[i];//先存下来对于当前的p的值dp[p*v[i]+q]-p*w[i]
while(!Q.empty()&&val[p]>=val[Q.back()])Q.pop_back();//将比这个值小的全都pop掉,保证队列的单调递减性
Q.push_back(p);//先将当前的p下标push进队列
int k=p-min(p,c[i]);//范围
while(!Q.empty()&&Q.front()<k)Q.pop_front();//将超出前面[p-min(p,c[i]),p]范围的下标pop掉,因为对于当前p超出范围了的下标,对于之后的p肯定也超出了范围,自己想一想为什么吧~
int s=p*v[i]+q;
dp[s]=max(dp[s],val[Q.front()]+p*w[i]);//去掉出范围的下标之后的队首元素肯定是最大值了哟~记住这是单调队列哈~
}
}
}
下面AC代码:
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#define Rint register int
#define mem(a,b) memset(a,(b),sizeof(a))
using namespace std;
typedef long long LL;
template<typename T>inline void read(T &x){
x=0;T w=1,ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(isdigit(ch))x=(x<<3)+(x<<1)+(ch^'0'),ch=getchar();
x=x*w;
}
inline void File(){
freopen("fuck.in","r",stdin);
freopen("fuck.out","w",stdout);
}
const int maxn=100+10;
int n,m;
int v[maxn],w[maxn],c[maxn];
int val[maxn],dp[maxn];
inline void init(){
mem(dp,0);
}
#include<queue>
int main(){
File();
int T;read(T);
while(T--){
init();
read(m);read(n);
for(Rint i=1;i<=n;i++){
read(v[i]);read(w[i]);read(c[i]);
for(Rint q=0;q<v[i];q++){
deque<int> Q;
for(Rint p=0;p*v[i]+q<=m;p++){
val[p]=dp[p*v[i]+q]-p*w[i];
while(!Q.empty()&&val[p]>=val[Q.back()])Q.pop_back();
Q.push_back(p);
int k=p-min(p,c[i]);
while(!Q.empty()&&Q.front()<k)Q.pop_front();
int s=p*v[i]+q;
dp[s]=max(dp[s],val[Q.front()]+p*w[i]);
}
}
}
printf("%d\n",dp[m]);
}
return 0;
}
/*
以下是lunch大佬的讲解内容:
f[j]=max(f[j-k*a[i]]+k*w[i])
j = p * a[i] + q ;
p = j / a[i];
q = j % a[i];
f[j] = max (f[p * a[i] + q - k * a[i]]+k*w[i])
f[j] = max (f[(p-k)*a[i]+q]+k*w[i])
k ∈ [0,min(p,c[i])]
h = p - k ;
h ∈ [p-min(p,c[i]),p]
f[j] = max (f[h*a[i]+q]+(p-h)*w[i])
f[j] = max (f[h*a[i]+q]-h*w[i]) + p * w[i];
For(i, 1, n)
For(q,0,a[i]-1)
For(p,0,m/a[i])
*/
HDU 2191 - 单调队列优化多重背包的更多相关文章
- POJ 1742 (单调队列优化多重背包+混合背包)
(点击此处查看原题) 题意分析 给你n种不同价值的硬币,价值为val[1],val[2]...val[n],每种价值的硬币有num[1],num[2]...num[n]个,问使用这n种硬币可以凑齐[1 ...
- [Bzoj4182]Shopping(点分治)(树上背包)(单调队列优化多重背包)
4182: Shopping Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 374 Solved: 130[Submit][Status][Disc ...
- bzoj4182 Shopping 点分治+单调队列优化多重背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4182 题解 有一个很直观的想法是设 \(dp[x][i]\) 表示在以 \(x\) 为根的子树 ...
- POJ 1276 Cash Machine(单调队列优化多重背包)
Cash Machine Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 38986 Accepted: 14186 De ...
- [小明打联盟][斜率/单调队列 优化dp][背包]
链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...
- hdu 3401 单调队列优化DP
Trade Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status ...
- hdu 3401 单调队列优化+dp
http://acm.hdu.edu.cn/showproblem.php?pid=3401 Trade Time Limit: 2000/1000 MS (Java/Others) Memor ...
- hdu 3401 单调队列优化动态规划
思路: 动态方程很容易想到dp[i][j]=max(dp[i][j],dp[i-w-1][j-k]-k*ap[i],dp[i-w-1][j+k]+k*bp[i]): dp[i][j]表示第i天拥有j个 ...
- hdu 4374 单调队列优化动态规划
思路:我只想说,while(head<=rear&&que[rear].val+sum[j]-sum[que[rear].pos-1]<=dp[i-1][j]+num[i- ...
随机推荐
- LODOP弹出对话框获取保存文件的路径
通常一般不会让用户自己在文本框里填上路径,因为路径要输入字母字符等比较麻烦,而且用户硬盘里文件很多,也不知道要保存在哪里,LODOP可以弹出一个选择保存路径的弹窗,然后把返回选择的路径值.这样用户就可 ...
- \r\n
转载自http://www.studyofnet.com/news/285.html '\r'是回车,'\n'是换行,前者使光标到行首,后者使光标下移一格,通常敲一个回车键,即是回车,又是换行(\r\ ...
- BZOJ3322[Scoi2013]摩托车交易——最大生成树+贪心+倍增
题目描述 mzry1992 在打完吊针出院之后,买了辆新摩托车,开始了在周边城市的黄金运送生意.在mzry1992 生活的地方,城市之间是用双向高速公路连接的.另外,每条高速公路有一个载重上限,即在不 ...
- MT【232】展开式中的系数
$(1+x+x^2+\cdots+x^{100})^3$展开式中$x^{150}$前的系数为_____ 解答:$(1+x+x^2+\cdots+x^{100})^3=(1-x^{101})^3\sum ...
- Leetcode 26.删除排序数组中的重复项 By Python
给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成. 示例 1 ...
- A1008. Elevator
The highest building in our city has only one elevator. A request list is made up with N positive nu ...
- 运行vb写的程序,有些电脑上会弹出一个与office相关的窗口
到网上搜索了一下,找了几个解决方案,不过我的电脑上没出现过,所以先收藏一下,或许以后能用上. 来自:http://bbs.csdn.net/topics/380204412 今天将注册表的项一个个删除 ...
- CodeBlocks: 生成的exe文件自定义一个图标
CodeBlocks生成的exe文件的图标默认是系统图标,如何自定义一个漂亮的小图标呢? 我是C菜鸟,平时只用CodeBlocks练习c,也不开发什么软件,这个问题就难倒我了. 到网上搜索了一下,发现 ...
- 内存分布图,errno
输出错误,errno是默认的全局变量 错误处理函数: 错误号:errno perror函数: void perror(const char *s); strerror函数: ...
- react性能检测与优化
网页运行最重要的是速度快嘛,那我们怎么知道网页运行的时候,哪些部分快哪些部分慢呢? 我们可以安装react性能检测工具进行检测,通过安装 然后修改app/index.jsx文件 ,在要检测的组件运行之 ...