Problem C. Bilingual



Problem

Elliot's parents speak French and English to him at home. He has heard a lot of words, but it isn't always clear to him which word comes from which language! Elliot knows one sentence that he's sure is English and one sentence that he's sure is French, and
some other sentences that could be either English or French. If a word appears in an English sentence, it must be a word in English. If a word appears in a French sentence, it must be a word in French.

Considering all the sentences that Elliot has heard, what is the minimum possible number of words that he's heard that must be words in both English and French?

Input

The first line of the input gives the number of test cases, TT test cases follow. Each starts with a single line containing an integer NN lines follow, each of which contains a series
of space-separated "words". Each "word" is made up only of lowercase characters a-z. The first of those N lines is a "sentence" in English, and the second is a "sentence" in French. The rest could be "sentences" in either English or French.
(Note that the "words" and "sentences" are not guaranteed to be valid in any real language.)

Output

For each test case, output one line containing "Case #x: y", where x is the test case number (starting from 1) and y is the minimum number of words that Elliot has heard that must be words in both English and French.

Limits

1 ≤ T ≤ 25.

Each word will contain no more than 10 characters.

The two "known" sentences will contain no more than 1000 words each.

The "unknown" sentences will contain no more than 10 words each.

Small dataset

2 ≤ N ≤ 20.

Large dataset

2 ≤ N ≤ 200.

Sample



Input 

 


Output 

 
4
2
he loves to eat baguettes
il aime manger des baguettes
4
a b c d e
f g h i j
a b c i j
f g h d e
4
he drove into a cul de sac
elle a conduit sa voiture
il a conduit dans un cul de sac
il mange pendant que il conduit sa voiture
6
adieu joie de vivre je ne regrette rien
adieu joie de vivre je ne regrette rien
a b c d e
f g h i j
a b c i j
f g h d e
Case #1: 1
Case #2: 4
Case #3: 3
Case #4: 8

In Case #1, Elliot knows for sure that the first sentence is in English and the second is in French, so there is no ambiguity; the only word that must be in both English and French is "baguettes".



In Case #2, the last two sentences could either be: English English, English French, French English, or French French. The second of those possibilities is the one that minimizes the number of words common to both languages; that set turns out to be d, e, i,
and j.

最小割

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
#include<map>
#include<string>
#include<vector>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXT (25+10)
#define MAXLen (1000*11+10)
#define MAXWord1 (1000+10)
#define MAXWord2 (10)
#define MAXTotword (2000+10*200+10)
#define MAXn (200+10)
#define MAXm (200000+10)
#define MAXN (1000000+2)
#define MAXM ((1000000+2)*2+100)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
class Max_flow //dinic+当前弧优化
{
public:
int n,s,t;
int q[MAXN];
int edge[MAXM],next[MAXM],pre[MAXN],weight[MAXM],size;
void addedge(int u,int v,int w)
{
edge[++size]=v;
weight[size]=w;
next[size]=pre[u];
pre[u]=size;
}
void addedge2(int u,int v,int w){addedge(u,v,w),addedge(v,u,0);}
bool b[MAXN];
int d[MAXN];
bool SPFA(int s,int t)
{
For(i,n) d[i]=INF;
MEM(b)
d[q[1]=s]=0;b[s]=1;
int head=1,tail=1;
while (head<=tail)
{
int now=q[head++];
Forp(now)
{
int &v=edge[p];
if (weight[p]&&!b[v])
{
d[v]=d[now]+1;
b[v]=1,q[++tail]=v;
}
}
}
return b[t];
}
int iter[MAXN];
int dfs(int x,int f)
{
if (x==t) return f;
Forpiter(x)
{
int v=edge[p];
if (weight[p]&&d[x]<d[v])
{
int nowflow=dfs(v,min(weight[p],f));
if (nowflow)
{
weight[p]-=nowflow;
weight[p^1]+=nowflow;
return nowflow;
}
}
}
return 0;
}
int max_flow(int s,int t)
{
int flow=0;
while(SPFA(s,t))
{
For(i,n) iter[i]=pre[i];
int f;
while (f=dfs(s,INF))
flow+=f;
}
return flow;
}
void mem(int n,int s,int t)
{
(*this).n=n;
(*this).t=t;
(*this).s=s; size=1;
MEM(pre)
}
}S; int T,n; vector<string> split(string s,string del = " \n\0") // 以在del出现过的不论什么字符为分隔符
{
vector<string> ret;
s+=del[0]; string p="";
int sz=s.size();
Rep(i,sz)
{
if (del.find(s[i])==string::npos)
{
p+=s[i];
}
else
{
if (p!="")
{
ret.push_back(p);
p="";
}
}
}
return ret;
} vector<string> get_line_words() {
static string buf;
getline(cin,buf,'\n');
return split(buf);
} map<string,int> h;
int get_id(string s)
{
map<string,int>::iterator it=h.find(s);
if (it==h.end()) return h[s]=h.size();
return it->second;
} vector<string> a[MAXn];
int a2[MAXn][MAXWord1];
int main()
{
freopen("gcj2015R2CC-large-practice.in","r",stdin);
freopen("gcj2015R2CC-large-practice.out","w",stdout); cin>>T;
For(kcase,T)
{
h.clear();
scanf("%d\n",&n);
For(i,n)
{
string s;
a[i]=get_line_words();
a2[i][0]=a[i].size();
Rep(j,a2[i][0])
a2[i][j+1]=get_id(a[i][j]); }
//
// For(i,n)
// {
// For(j,a2[i][0]) cout<<a2[i][j]<<' ';
// cout<<endl;
//
// }
// int m = h.size(),s=1,t=2*m+n;
S.mem(t,s,t); For(i,m)
{
S.addedge2(i+1,i+1+m,1);
} For(j,a2[1][0]) {
S.addedge2(s,1+a2[1][j],INF);
}
For(j,a2[2][0]) {
S.addedge2(1+a2[2][j]+m,t,INF);
} Fork(i,3,n)
{
For(j,a2[i][0]) {
S.addedge2(2*m+1+i-2,1+a2[i][j],INF);
S.addedge2(1+a2[i][j]+m,2*m+1+i-2,INF);
}
} int ans=S.max_flow(s,t);
printf("Case #%d: %d\n",kcase,ans);
} return 0;
}

GCJ 2015R2(Bilingual-最小割)的更多相关文章

  1. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  2. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. BZOJ3438 小M的作物(最小割)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...

  5. 最大流-最小割 MAXFLOW-MINCUT ISAP

    简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...

  6. bzoj1412最小割

    太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...

  7. 【BZOJ1497】[NOI2006]最大获利 最小割

    裸的最小割,很经典的模型. 建图:要求总收益-总成本最大,那么将每条弧与源点相连,流量为成本,每个收益与汇点相连,流量为收益,然后每条弧与它所能到达的收益相连,流量为inf. 与源点相连的是未被选中的 ...

  8. 二分图&网络流&最小割等问题的总结

    二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...

  9. CQOI 2016 不同的最小割

    题目大意:一个无向图,求所有点对不同的最小割种类数 最小割最多有n-1个,这n-1个最小割构成一个最小割树 分治法寻找n-1个最小割.对于当前点集X,任选两点为ST做最小割,然后找出与S相连的所有点和 ...

随机推荐

  1. Desugar Scala(15) -- unapply和unapplySeq方法

    欢迎关注我的新博客地址:http://cuipengfei.me/ 实在想不到什么动词可以当做脱衣服来讲了,所以从现在开始这系列博文就叫做Desugar Scala了.除非哪天才思泉涌,又想到了新词: ...

  2. sublime text 3中配置golang开发环境

    1:首先下载 Go源码 https://golang.org/dl/  [根据不同的环境选择] 2:新建文件项目文件夹 存放  D:/Go_project 分别建立  bin  src  pkg  子 ...

  3. 一个通用的JavaScript分页

    1.JavaScript代码 Pagination=function(id) { var totalNum=0; var maxNum=10; var pageUrl=""; va ...

  4. Hive:数据仓库工具,由Facebook贡献。

    Hadoop Common: 在0.20及以前的版本中,包含HDFS.MapReduce和其他项目公共内容,从0.21开始HDFS和MapReduce被分离为独立的子项目,其余内容为Hadoop Co ...

  5. strust2自定义interceptor的基本方法及操作

    需求:制作一个网站需要用户登陆后才能查看,即一个权限的问题 1.首先明确在用户没登陆前有两个Action请求是可以通过的,即注册和登陆. 2.创建拦截器,如UserLoginInterceptor.j ...

  6. SSH开发环境整合搭建

    1.建立动态web工程,加入必要的jar包. antlr-2.7.7.jar asm-3.3.jar asm-commons-3.3.jar asm-tree-3.3.jar c3p0-0.9.1.2 ...

  7. WebApi 异常处理解决方案

    1.继承ExceptionFilterAttribute类,重写OnException方法 public class WebApiExceptionFilterAttribute : Exceptio ...

  8. Linux命令之乐--telnet

    监测端口是否通畅

  9. 使用pug(jade),以及在vue+webpack中使用pug(jade)

    一:在HTML中使用pug 在css中有预处理器less和scss来使我们的样式表更加的简介,那么在HTML中有没有这样的格式呢,答案是有的,那就是pug(前身是jade),效果如下: 转译以后 好, ...

  10. MVC模式 与 Model2模型 介绍

    Model1回顾 MVC模式:MVC(Model.View.Controller)是软件开发过程中比较流行的设计思想.旨在分离模型.控制.师徒.是一种分层思想的体现. Model2简介Java Web ...