GCJ 2015R2(Bilingual-最小割)
Problem C. Bilingual
Problem
Elliot's parents speak French and English to him at home. He has heard a lot of words, but it isn't always clear to him which word comes from which language! Elliot knows one sentence that he's sure is English and one sentence that he's sure is French, and
some other sentences that could be either English or French. If a word appears in an English sentence, it must be a word in English. If a word appears in a French sentence, it must be a word in French.
Considering all the sentences that Elliot has heard, what is the minimum possible number of words that he's heard that must be words in both English and French?
Input
The first line of the input gives the number of test cases, T. T test cases follow. Each starts with a single line containing an integer N. N lines follow, each of which contains a series
of space-separated "words". Each "word" is made up only of lowercase characters a-z. The first of those N lines is a "sentence" in English, and the second is a "sentence" in French. The rest could be "sentences" in either English or French.
(Note that the "words" and "sentences" are not guaranteed to be valid in any real language.)
Output
For each test case, output one line containing "Case #x: y", where x is the test case number (starting from 1) and y is the minimum number of words that Elliot has heard that must be words in both English and French.
Limits
1 ≤ T ≤ 25.
Each word will contain no more than 10 characters.
The two "known" sentences will contain no more than 1000 words each.
The "unknown" sentences will contain no more than 10 words each.
Small dataset
2 ≤ N ≤ 20.
Large dataset
2 ≤ N ≤ 200.
Sample
|
Input |
Output |
4 |
Case #1: 1 |
In Case #1, Elliot knows for sure that the first sentence is in English and the second is in French, so there is no ambiguity; the only word that must be in both English and French is "baguettes".
In Case #2, the last two sentences could either be: English English, English French, French English, or French French. The second of those possibilities is the one that minimizes the number of words common to both languages; that set turns out to be d, e, i,
and j.
最小割
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
#include<map>
#include<string>
#include<vector>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXT (25+10)
#define MAXLen (1000*11+10)
#define MAXWord1 (1000+10)
#define MAXWord2 (10)
#define MAXTotword (2000+10*200+10)
#define MAXn (200+10)
#define MAXm (200000+10)
#define MAXN (1000000+2)
#define MAXM ((1000000+2)*2+100)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
class Max_flow //dinic+当前弧优化
{
public:
int n,s,t;
int q[MAXN];
int edge[MAXM],next[MAXM],pre[MAXN],weight[MAXM],size;
void addedge(int u,int v,int w)
{
edge[++size]=v;
weight[size]=w;
next[size]=pre[u];
pre[u]=size;
}
void addedge2(int u,int v,int w){addedge(u,v,w),addedge(v,u,0);}
bool b[MAXN];
int d[MAXN];
bool SPFA(int s,int t)
{
For(i,n) d[i]=INF;
MEM(b)
d[q[1]=s]=0;b[s]=1;
int head=1,tail=1;
while (head<=tail)
{
int now=q[head++];
Forp(now)
{
int &v=edge[p];
if (weight[p]&&!b[v])
{
d[v]=d[now]+1;
b[v]=1,q[++tail]=v;
}
}
}
return b[t];
}
int iter[MAXN];
int dfs(int x,int f)
{
if (x==t) return f;
Forpiter(x)
{
int v=edge[p];
if (weight[p]&&d[x]<d[v])
{
int nowflow=dfs(v,min(weight[p],f));
if (nowflow)
{
weight[p]-=nowflow;
weight[p^1]+=nowflow;
return nowflow;
}
}
}
return 0;
}
int max_flow(int s,int t)
{
int flow=0;
while(SPFA(s,t))
{
For(i,n) iter[i]=pre[i];
int f;
while (f=dfs(s,INF))
flow+=f;
}
return flow;
}
void mem(int n,int s,int t)
{
(*this).n=n;
(*this).t=t;
(*this).s=s; size=1;
MEM(pre)
}
}S; int T,n; vector<string> split(string s,string del = " \n\0") // 以在del出现过的不论什么字符为分隔符
{
vector<string> ret;
s+=del[0]; string p="";
int sz=s.size();
Rep(i,sz)
{
if (del.find(s[i])==string::npos)
{
p+=s[i];
}
else
{
if (p!="")
{
ret.push_back(p);
p="";
}
}
}
return ret;
} vector<string> get_line_words() {
static string buf;
getline(cin,buf,'\n');
return split(buf);
} map<string,int> h;
int get_id(string s)
{
map<string,int>::iterator it=h.find(s);
if (it==h.end()) return h[s]=h.size();
return it->second;
} vector<string> a[MAXn];
int a2[MAXn][MAXWord1];
int main()
{
freopen("gcj2015R2CC-large-practice.in","r",stdin);
freopen("gcj2015R2CC-large-practice.out","w",stdout); cin>>T;
For(kcase,T)
{
h.clear();
scanf("%d\n",&n);
For(i,n)
{
string s;
a[i]=get_line_words();
a2[i][0]=a[i].size();
Rep(j,a2[i][0])
a2[i][j+1]=get_id(a[i][j]); }
//
// For(i,n)
// {
// For(j,a2[i][0]) cout<<a2[i][j]<<' ';
// cout<<endl;
//
// }
// int m = h.size(),s=1,t=2*m+n;
S.mem(t,s,t); For(i,m)
{
S.addedge2(i+1,i+1+m,1);
} For(j,a2[1][0]) {
S.addedge2(s,1+a2[1][j],INF);
}
For(j,a2[2][0]) {
S.addedge2(1+a2[2][j]+m,t,INF);
} Fork(i,3,n)
{
For(j,a2[i][0]) {
S.addedge2(2*m+1+i-2,1+a2[i][j],INF);
S.addedge2(1+a2[i][j]+m,2*m+1+i-2,INF);
}
} int ans=S.max_flow(s,t);
printf("Case #%d: %d\n",kcase,ans);
} return 0;
}
GCJ 2015R2(Bilingual-最小割)的更多相关文章
- BZOJ 1391: [Ceoi2008]order [最小割]
1391: [Ceoi2008]order Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1509 Solved: 460[Submit][Statu ...
- BZOJ-2127-happiness(最小割)
2127: happiness(题解) Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1806 Solved: 875 Description 高一 ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- BZOJ3438 小M的作物(最小割)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...
- 最大流-最小割 MAXFLOW-MINCUT ISAP
简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...
- bzoj1412最小割
太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...
- 【BZOJ1497】[NOI2006]最大获利 最小割
裸的最小割,很经典的模型. 建图:要求总收益-总成本最大,那么将每条弧与源点相连,流量为成本,每个收益与汇点相连,流量为收益,然后每条弧与它所能到达的收益相连,流量为inf. 与源点相连的是未被选中的 ...
- 二分图&网络流&最小割等问题的总结
二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...
- CQOI 2016 不同的最小割
题目大意:一个无向图,求所有点对不同的最小割种类数 最小割最多有n-1个,这n-1个最小割构成一个最小割树 分治法寻找n-1个最小割.对于当前点集X,任选两点为ST做最小割,然后找出与S相连的所有点和 ...
随机推荐
- lua工具库penlight--08额外的库(二)
执行一系列的参数 类型说明符也可以 是' ('MIN '..' MAX)' 的形式. local lapp = require 'pl.lapp' local args = lapp [[ Setti ...
- [kernel]内核日志及printk结构分析
一直都知道内核printk分级机制,但是没有去了解过,前段时间和一个同事聊到开机启动打印太多,只需要设置一下等级即可:另外今天看驱动源码,也看到类似于Printk(KERN_ERR "... ...
- RP2836 OUT0-OUT7 对应关系
ARM-IO9 OUT0 PA8 备用 P5-A4管脚,可以连接74HC164D级联 ARM-IO10 OUT7 PA1 3 ...
- PHP——内测:联系人管理
要求见文件-内测:联系人管理.pdf 数据库为mycontacts 表格为contacts,groups 表格内容为: zhuye.php <!DOCTYPE html PUBLIC " ...
- oozie中时间EL表达式
EL表达式: 常量表示形式 含义说明 ${coord:minutes(int n)} 返回日期时间:从一开始,周期执行n分钟 ${coord:hours(int n)} 返回日期时间:从一开始,周期执 ...
- Maven基础命令
Maven 参数 -D 传入属性参数 -P 使用pom中指定的配置 -e 显示maven运行出错的信息 -o 离线执行命令,即不去远程仓库更新包 -X 显示maven允许的debug信息 -U 强制去 ...
- msyql的内存计算
本文将讨论MySQL内存相关的一些选项,包括: 单位都是b,不是kb,即1B=1/(1024*1024*1024)G 1)全局的buffer,如innodb_buffer_pool_size: 2)线 ...
- [android] AndroidManifest.xml【 manifest -> uses-permission】
在 API Level 1 时被引入 简介: 在某些情况下,你为app设置的权限将会影响到google应用商店会用何种规则来过滤你的APP. 如果你需要一个硬件相关的权限——CAMERA,googl ...
- Bufferread有readline()使得字符输入更加方便
原则:保证编解码方式的统一,才能不至于出现错误. Io包的InputStreamread称为从字节流到字符流的桥转换类.这个类可以设定字符转换方式. OutputStreamred:字符到字节 Buf ...
- javascript实现打印功能
<input name="b_print" type="button" class="ipt" onClick="print ...