【CodeForces】932 E. Team Work
【题目】E. Team Work
【题意】给定n和k,n个人中选择一个大小为x非空子集的代价是x^k,求所有非空子集的代价和%1e9+7。n<=10^9,k<=5000。
【算法】斯特林反演
【题解】枚举非空子集大小,则题目要求:
$$ans=\sum_{i=1}^{n}\binom{n}{i}i^k$$
对通常幂进行斯特林反演,得到:
$$ans=\sum_{i=1}^{n}\binom{n}{i}\sum_{j=1}^{k}\begin{Bmatrix} k\\ j \end{Bmatrix}*i^{\underline{j}}$$
第二类斯特林数和i无关,因此提出来,从而尝试将下降幂和组合数搭配起来:
$$ans=\sum_{j=1}^{k}\begin{Bmatrix} k\\ j \end{Bmatrix}\sum_{i=1}^{n}\frac{n!}{(n-i)!(i-j)!}$$
如果(n-i)!(i-j)!是组合数的分母,那分子就是n-i+i-j=n-j,所以拆分$n!=(n-j)!*n^{\underline{j}}$,得到:
$$ans=\sum_{j=1}^{k}\begin{Bmatrix} k\\ j \end{Bmatrix}*n^{\underline{j}}\sum_{i=1}^{n}\binom{n-j}{n-i}$$
后面可以直接用组合数求和公式,得到:
$$ans=\sum_{j=1}^{k}\begin{Bmatrix} k\\ j \end{Bmatrix}*n^{\underline{j}}*2^{n-j}$$
然后O(k^2)预处理第二类斯特林数,然后O(k log k)得到答案。如果模数是998244353的话,还可以NTT求第二类斯特林数。
另外要注意快速幂的指数是负数时直接退出。
#include<cstdio>
int n,m,s[][],ans,x,M=1e9+;
int p(int x,int k){if(k<)return ;int s=;while(k){if(k&)s=1ll*s*x%M;x=1ll*x*x%M;k>>=;}return s;}
int main(){
scanf("%d%d",&n,&m);s[][]=x=;
for(int i=;i<=m;i++)for(int j=;j<=m;j++)s[i][j]=(s[i-][j-]+1ll*s[i-][j]*j)%M;
for(int i=;i<=m;i++)ans=(ans+1ll*s[m][i]*(x=1ll*x*(n-i+)%M)%M*p(,n-i))%M;
printf("%d",ans);
}
【CodeForces】932 E. Team Work的更多相关文章
- 【Codeforces】Round #491 (Div. 2) 总结
[Codeforces]Round #491 (Div. 2) 总结 这次尴尬了,D题fst,E没有做出来.... 不过还好,rating只掉了30,总体来说比较不稳,下次加油 A:If at fir ...
- 【Codeforces】Round #488 (Div. 2) 总结
[Codeforces]Round #488 (Div. 2) 总结 比较僵硬的一场,还是手速不够,但是作为正式成为竞赛生的第一场比赛还是比较圆满的,起码没有FST,A掉ABCD,总排82,怒涨rat ...
- 【CodeForces】601 D. Acyclic Organic Compounds
[题目]D. Acyclic Organic Compounds [题意]给定一棵带点权树,每个点有一个字符,定义一个结点的字符串数为往下延伸能得到的不重复字符串数,求min(点权+字符串数),n&l ...
- 【Codeforces】849D. Rooter's Song
[算法]模拟 [题意]http://codeforces.com/contest/849/problem/D 给定n个点从x轴或y轴的位置p时间t出发,相遇后按对方路径走,问每个数字撞到墙的位置.(还 ...
- 【CodeForces】983 E. NN country 树上倍增+二维数点
[题目]E. NN country [题意]给定n个点的树和m条链,q次询问一条链(a,b)最少被多少条给定的链覆盖.\(n,m,q \leq 2*10^5\). [算法]树上倍增+二维数点(树状数组 ...
- 【CodeForces】925 C.Big Secret 异或
[题目]C.Big Secret [题意]给定数组b,求重排列b数组使其前缀异或和数组a单调递增.\(n \leq 10^5,1 \leq b_i \leq 2^{60}\). [算法]异或 为了拆位 ...
- 【CodeForces】700 D. Huffman Coding on Segment 哈夫曼树+莫队+分块
[题目]D. Huffman Coding on Segment [题意]给定n个数字,m次询问区间[l,r]的数字的哈夫曼编码总长.1<=n,m,ai<=10^5. [算法]哈夫曼树+莫 ...
- 【CodeForces】906 D. Power Tower 扩展欧拉定理
[题目]D. Power Tower [题意]给定长度为n的正整数序列和模数m,q次询问区间[l,r]累乘幂%m的答案.n,q<=10^5,m,ai<=10^9. [算法]扩展欧拉定理 [ ...
- 【CodeForces】741 D. Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(dsu on tree)
[题意]给定n个点的树,每条边有一个小写字母a~v,求每棵子树内的最长回文路径,回文路径定义为路径上所有字母存在一种排列为回文串.n<=5*10^5. [算法]dsu on tree [题解]这 ...
随机推荐
- Apache 的知识点
apache 的官方文档 http://httpd.apache.org/docs/ Mac下如何查看Apache的版本 在终端(Terminal)中输入 apachectl -v,之后回车,结果如下 ...
- 初识ES6 解构
1.数组的解构 ES6 允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构 例子: let [a, b, c] = [1, 2, 3]; console.log(a);//1cons ...
- React.js + LiveReload配置详解
一.介绍一下LiveReload: LiveReload monitors changes in the file system. As soon as you save a file, it is ...
- 目标跟踪之Lukas-Kanade光流法(转)
光流是图像亮度的运动信息描述.光流法计算最初是由Horn和Schunck于1981年提出的,创造性地将二维速度场与灰度相联系,引入光流约束方程,得到光流计算的基本算法.光流计算基于物体移动的光学特性提 ...
- VSVC2010中常用的C++11特性
static_assert 声明 static_assert 声明在编译时测试软件断言,这与在运行时进行测试的其他断言机制不同. 如果断言失败,则编译也将失败,且系统将发出指定的错误消息. const ...
- Spring Boot 学习笔记 - 01
看了[纯洁的微笑]的博客后,我决定开始学好 Spring 体系了,真的是解决了饥渴的我.
- 题解 P2955 【[USACO09OCT]奇数偶数Even? Odd? 】
很明显这题是个假入门! 小金羊一不小心点进题解发现了内幕 能看的出来都WA过Unsigned long long int 做题可以用Python,Python的变量虽然 强悍的不行! 但是我们可以用字 ...
- C++解析(9):关于const和引用的疑问
0.目录 1.关于const的疑问 2.关于引用的疑问 2.1 引用与指针 2.2 从C++语言与C++编译器角度看引用 2.3 从工程项目开发看引用 3.小结 1.关于const的疑问 const什 ...
- Codeforces Round #447 (Div. 2) 题解
A.很水的题目,3个for循环就可以了 #include <iostream> #include <cstdio> #include <cstring> using ...
- Django安装及简介
一. Django简介 Python下有许多款不同的 Web 框架.Django是重量级选手中最有代表性的一位.许多成功的网站和APP都基于Django. Django是一个开放源代码的Web应用框架 ...