转载:https://www.cnblogs.com/lifegoesonitself/p/3391741.html

PriorityQueue是从JDK1.5开始提供的新的数据结构接口,它是一种基于优先级堆的极大优先级队列。优先级队列是不同于先进先出队列的另一种队列。每次从队列中取出的是具有最高优先权的元素。如果不提供Comparator的话,优先队列中元素默认按自然顺序排列,也就是数字默认是小的在队列头,字符串则按字典序排列(参阅 Comparable),也可以根据 Comparator 来指定,这取决于使用哪种构造方法。优先级队列不允许 null 元素。依靠自然排序的优先级队列还不允许插入不可比较的对象(这样做可能导致 ClassCastException)

此队列的头是按指定排序方式的最小元素。如果多个元素都是最小值,则头是其中一个元素——选择方法是任意的。

队列检索操作 poll、remove、peek 和 element 访问处于队列头的元素。
优先级队列是无界的,但是有一个内部容量,控制着用于存储队列元素的数组的大小。
它总是至少与队列的大小相同。随着不断向优先级队列添加元素,其容量会自动增加。无需指定容量增加策略的细节。
注意1:该队列是用数组实现,但是数组大小可以动态增加,容量无限。
注意2:此实现不是同步的。不是线程安全的。如果多个线程中的任意线程从结构上修改了列表, 则这些线程不应同时访问 PriorityQueue 实例,这时请使用线程安全的PriorityBlockingQueue 类。
注意3:不允许使用 null 元素。
注意4:此实现为插入方法(offer、poll、remove() 和 add 方法)提供 O(log(n)) 时间;
为 remove(Object) 和 contains(Object) 方法提供线性时间;
为检索方法(peek、element 和 size)提供固定时间。
注意5:方法iterator()中提供的迭代器并不保证以有序的方式遍历优先级队列中的元素。
至于原因可参考下面关于PriorityQueue的内部实现
如果需要按顺序遍历,请考虑使用 Arrays.sort(pq.toArray())。
注意6:可以在构造函数中指定如何排序。如:
PriorityQueue()
使用默认的初始容量(11)创建一个 PriorityQueue,并根据其自然顺序来排序其元素(使用 Comparable)。
PriorityQueue(int initialCapacity)
使用指定的初始容量创建一个 PriorityQueue,并根据其自然顺序来排序其元素(使用 Comparable)。
PriorityQueue(int initialCapacity, Comparator comparator)
使用指定的初始容量创建一个 PriorityQueue,并根据指定的比较器comparator来排序其元素。
注意7:此类及其迭代器实现了 Collection 和 Iterator 接口的所有可选 方法。
PriorityQueue的内部实现
PriorityQueue对元素采用的是堆排序,头是按指定排序方式的最小元素。堆排序只能保证根是最大(最小),整个堆并不是有序的。
方法iterator()中提供的迭代器可能只是对整个数组的依次遍历。也就只能保证数组的第一个元素是最小的。

package com.chenshuyi.data;

import java.util.Comparator;
import java.util.Iterator;
import java.util.PriorityQueue;
import java.util.Random; //固定容量的优先队列,模拟大顶堆,用于解决求topN小或 topk大的问题
@SuppressWarnings({ "unchecked", "rawtypes" })
public class TopKwithPriorityQueue<E extends Comparable> {
private PriorityQueue<E> queue;
private int K; // 堆的最大容量,即 topk,所以maxsize=k public TopKwithPriorityQueue(int maxSize) {
if (maxSize <= 0)
throw new IllegalArgumentException();
this.K = maxSize;
this.queue = new PriorityQueue(maxSize, new Comparator<E>() {
public int compare(E o1, E o2) {
return o1.compareTo(o2);
// 生成最大堆使用o2-o1,生成最小堆使用o1-o2, 并修改 e.compareTo(peek) 比较规则return (o2.compareTo(o1));
}
});
} public void add(E e) {
if (queue.size() < K) { // 未达到最大容量,直接添加
queue.add(e);
} else { // 队列已满
E peek = queue.peek(); // 取堆顶元素
if (e.compareTo(peek) > 0) { // 将新元素与当前堆顶元素比较,保留较小的元素
queue.poll();
queue.add(e);
}
}
} // public List<E> sortedList() {
// List<E> list = new ArrayList<E>(queue); // 可以将整个优先队列传入 arraylist的构造方法做参数
// Collections.sort(list); // PriorityQueue本身的遍历是无序的,最终需要对队列中的元素进行排序
// return list;
// } public static void main(String[] args) {
final TopKwithPriorityQueue pq = new TopKwithPriorityQueue(3); // 返回前k=10位
Random random = new Random();
int rNum = 0;
System.out.println("100 个 0~999 之间的随机数:-----------------------------------");
for (int i = 1; i <= 20; i++) {
rNum = random.nextInt(1000);
System.out.print(rNum + ",");
pq.add(rNum);
}
System.out.println("\n PriorityQueue 本身的遍历是无序的:返回的top10 最小堆是:-----------------------------------");
Iterable<Integer> iter = new Iterable<Integer>() {
public Iterator<Integer> iterator() {
return pq.queue.iterator();
}
};
for (Integer item : iter) {
System.out.print(item + ",");
}
System.out.println();
System.out.println("PriorityQueue 排序后的遍历:返回的top10 最小堆是:-----------------------------------");
/*
* for (Integer item : pq.sortedList()) { System.out.println(item); }
*/
// 或者直接用内置的 poll() 方法,每次取队首元素(堆顶的最大值)
while (!pq.queue.isEmpty()) {
System.out.print(pq.queue.poll() + ", ");
}
}
}
由于仅仅保存了K个数据,有调整最小堆的时间复杂度为O(lnK),因此TOp K算法(问题)时间复杂度为O(nlnK)

堆排序算法的性能分析:

  空间复杂度:o(1); 

堆调整一次的时间复杂度是O(logK)。所以,通过堆来解决top K 问题的时间复杂度是O(nlogK).

其中,n为数据的个数,K为堆维护的数据的个数。

  稳定性:不稳定

优先队列PriorityQueue实现 大小根堆 解决top k 问题的更多相关文章

  1. 优先队列实现 大小根堆 解决top k 问题

      摘于:http://my.oschina.net/leejun2005/blog/135085 目录:[ - ] 1.认识 PriorityQueue 2.应用:求 Top K 大/小 的元素 3 ...

  2. PriorityQueue实现大顶堆

    在做一道算法时需要使用大顶堆,所以查了一下记录. 使用PriorityQueue实现大顶堆 PriorityQueue默认是一个小顶堆,然而可以通过传入自定义的Comparator函数来实现大顶堆.如 ...

  3. scala写算法-用小根堆解决topK

    topK问题是指从大量数据中获取最大(或最小)的k个数,比如从全校学生中寻找成绩最高的500名学生等等. 本问题可采用小根堆解决.思路是先把源数据中的前k个数放入堆中,然后构建堆,使其保持堆序(可以简 ...

  4. 随手练——HDU Safe Or Unsafe (小根堆解决哈夫曼问题)

    HDU 2527 :http://acm.hdu.edu.cn/showproblem.php?pid=2527 哈夫曼树,学完就忘得差不多了,题目的意思都没看懂,有时间复习下,看了别人的才知道是怎么 ...

  5. 大数据热点问题TOP K

    1单节点上的topK (1)批量数据 数据结构:HashMap, PriorityQueue 步骤:(1)数据预处理:遍历整个数据集,hash表记录词频 (2)构建最小堆:最小堆只存k个数据. 时间复 ...

  6. 现有n 个乱序数,都大于 1000 ,让取排行榜前十,时间复杂度为o(n), top10, 或者 topK,应用场景榜单Top:10,堆实现Top k

    一.topK python实现   def topk(k, lst): top = [0 for i in range(k)] #生成一个长度为K 的有序列表 for item in lst: #循环 ...

  7. 使用堆实现Top K 算法 JS 实现

    1. 堆算法Top,时间复杂度 O(LogN) function top(arr,comp){ if(arr.length == 0){return ;} var i = arr.length / 2 ...

  8. Top K问题的两种解决思路

    Top K问题在数据分析中非常普遍的一个问题(在面试中也经常被问到),比如: 从20亿个数字的文本中,找出最大的前100个. 解决Top K问题有两种思路, 最直观:小顶堆(大顶堆 -> 最小1 ...

  9. 【Java源码】集合类-优先队列PriorityQueue

    一.类继承关系 public class PriorityQueue<E> extends AbstractQueue<E> implements java.io.Serial ...

随机推荐

  1. 处理函数和数组声明[条款17]---《C++必知必会》

    指向函数的指针声明和指向数组的指针声明容易混淆,原因在于函数和数组修饰符的优先级比指针修饰符的优先级高,因此通常需要使用圆括号. int *f1( );//一个返回值为 int* 的函数 int ( ...

  2. Java ArrayList详细介绍和使用示例

    ①对ArrayList的整体认识 ArrayList是一个数组队列,相当于动态数组.与Java中的数组相比,它的容量能动态增长.它继承了AbstractList,实现了List,RandomAcces ...

  3. xshell ssh 上传文件

    一.通过xshell  ssh 上传文件 [lxk@localhost ~]$ yum install lrzsz 安装 [lxk@localhost ~]$ rz 上传文件

  4. nginx 代理服务器配置双向证书验证

    生成证书链 用脚本生成一个根证书, 一个中间证书(intermediate), 三个客户端证书. 脚本来源于(有修改)https://stackoverflow.com/que... 中间证书的域名为 ...

  5. # PHP学习笔记之一

    PHP学习笔记之一 标签(空格分隔): PHP 资料来源:慕课网PHP入门篇.PHP学习手册 一.变量 变量定义 $变量名 = 变量值; $var = "xxx"; 变量类型查看 ...

  6. markdown工作随笔总结

    1. 锚点 (使用方法和链接很像) ## 目录 1. [命名](#命名) ....... **[返回顶部](#目录)** ## 命名 ###命名原则 可以从返回顶部回到目录,也可以点击目录的命名跳到命 ...

  7. 什么是浮动IP

    源地址:https://www.1and1.com/digitalguide/server/know-how/what-is-a-floating-ip/ What is a floating IP? ...

  8. jq定时器

    1.$(function(){ setInterval (showTime, 2000); function showTime(){ var today = new Date(); alert(&qu ...

  9. mybatis中使用mysql的模糊查询字符串拼接(like)

    方法一: <!-- 根据hid,hanme,grade,模糊查询医院信息--> 方法一: List<Hospital> getHospitalLike(@Param(" ...

  10. geoserver源码学习与扩展——增加服务接口

    参看:http://www.cnblogs.com/sillyemperor/archive/2011/01/11/1929420.html 上文写的很详细了.