Every-SG 博弈论 mark定义和结论
http://blog.sina.com.cn/s/blog_51cea4040100h3l9.html
这种类型,可以想成这样,有N组游戏,有N个穿红色衣服的人代表先手,有N个穿蓝色衣服的人代表后手,这个时候,编号相同的人和游戏分到一组游戏,既第i号穿红色衣服人和第i号穿蓝色衣服的人做第i个游戏。游戏开始后,首先所有穿红衣服的人先操作,然后所有穿蓝色衣服的人再操作,这样轮流下去。直到最后还没游戏完的一组,这组如果是红色衣服的人胜利,那么该游戏先手必胜,如果是蓝色衣服的人胜利,就是先手必败。
很明显,Every-SG不仅仅像其他SG那样仅仅跟SG值有关,还与一个游戏的时间长度有关。
如果先手想赢,那么,在做先手必胜的单一游戏时,他肯定是想把战线尽量拉长。在做先手必败的单一游戏时,他肯定是想把游戏尽快结束。
于是我们开一个Step数组。
表示对于先手必胜的单一游戏而言,它最少走好多步胜利。对于先手必败的单一游戏而言,它最多走好多步。
这样,我们只需要看最后所有单一游戏最大的step那组的SG是0还是非0就可以断定是否先手必胜了。
很容易得出:
(u是v的子状态)
step[v] = 0; (v为终止状态)
step[v] = max{step[u]} + 1; (sg[v]>0,sg[u]=0)
step[v] = min{step[u]} + 1; (sg[v]==0)
Every-SG 博弈论 mark定义和结论的更多相关文章
- [BZOJ 1874] [BeiJing2009 WinterCamp] 取石子游戏 【博弈论 | SG函数】
题目链接:BZOJ - 1874 题目分析 这个是一种组合游戏,是许多单个SG游戏的和. 就是指,总的游戏由许多单个SG游戏组合而成,每个SG游戏(也就是每一堆石子)之间互不干扰,每次从所有的单个游戏 ...
- 博弈论进阶之SG函数
SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...
- Nim游戏与SG函数 ——博弈论小结
写这篇博客之前,花了许久时间来搞这个SG函数,倒是各路大神的论文看的多,却到底没几个看懂的.还好网上一些大牛博客还是性价比相当高的,多少理解了些,也自己通过做一些题加深了下了解. 既然是博弈,经典的N ...
- [BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】
题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后 ...
- 【bzoj3576】[Hnoi2014]江南乐 博弈论+SG定理+数学
题目描述 两人进行 $T$ 轮游戏,给定参数 $F$ ,每轮给出 $N$ 堆石子,先手和后手轮流选择石子数大于等于 $F$ 的一堆,将其分成任意(大于1)堆,使得这些堆中石子数最多的和最少的相差不超过 ...
- 博弈论中的SG函数
SG函数的定义: g(x) = mex ( sg(y) |y是x的后继结点 ) 其中mex(x)(x是一个自然是集合)函数是x关于自然数集合的补集中的最小值,比如x={0,1,2,4,6} 则mex( ...
- 【博弈论】组合游戏及SG函数浅析
目录 预备知识 普通的Nim游戏 SG函数 预备知识 公平组合游戏(ICG) 若一个游戏满足: 由两名玩家交替行动: 游戏中任意时刻,合法操作集合只取决于这个局面本身: 若轮到某位选手时,若该选手无合 ...
- HDU 1079 Calendar Game (博弈论-sg)
版权声明:欢迎关注我的博客,本文为博主[炒饭君]原创文章.未经博主同意不得转载 https://blog.csdn.net/a1061747415/article/details/32336485 C ...
- 【博弈论】【SG函数】hdu1848 Fibonacci again and again
某个状态的SG函数被定义为 除该状态能一步转移到的状态的SG值以外的最小非负整数. 有如下性质:从SG值为x的状态出发,可以转移到SG值为0,1,...,x-1的状态. 不论SG值增加与否,我们都可以 ...
随机推荐
- 【BZOJ】1537: [POI2005]Aut- The Bus
[算法]DP+线段树求区间max(二维偏序) [题解] 状态转移方程:f[i]=max(f[j]+v[i]),x[j]<x[i]&&y[j]<y[i]. 观察j的条件限制显 ...
- GD库imagecopyresampled()方法详解~
整理了一下GD库这个缩放,拉伸复制的方法 因为这个函数参数太多了~ imagecopyresampled() /* //拷贝部分图像并调整大小 bool imagecopyresampled ( ...
- Aragorn's Story 树链剖分+线段树 && 树链剖分+树状数组
Aragorn's Story 来源:http://www.fjutacm.com/Problem.jsp?pid=2710来源:http://acm.hdu.edu.cn/showproblem.p ...
- perl6正则 4: before / after 代码断言: <?{}> / <!{}>
<?before> <? befor XXX> 某字符在 xxx 之前 <?after > <?after XXX> 某字符之后有XXX 对应的取反分别 ...
- 15 - reduce-pratial偏函数-lsu_cache
目录 介绍 1 reduce方法 2 partial方法(偏函数) 2.1 partial方法基本使用 2.2 partial原码分析 2.3 functools.warps实现分析 3 lsu_ca ...
- 64_n2
nodejs-from-0.1.3-4.fc26.noarch.rpm 11-Feb-2017 15:01 9982 nodejs-from2-2.1.0-6.fc26.noarch.rpm 11-F ...
- Python中如何Debug
debug是编码是非常重要的调试技巧,通过在运行过程中设置断点,帮助开发人员更好的理解运行过程. Python中debug不像JAVA或者C++那样在IDE中设置断点那么直观. Python的debu ...
- 设计模式之笔记--享元模式(Flyweight)
享元模式(Flyweight) 定义 享元模式(Flyweight),运用共享技术有效地支持大量细粒度的对象. 类图 描述 Flyweight:抽象享元类,是所有的具体享元类的基类,为子类规定出需要实 ...
- 安装sudo apt-get install ros-kinetic-desktop-full,报错mv: 无法获取'/var/lib/ni/licenses.xml.dpkg-old' 的文件状态(stat): 没有。。。。
安装sudo apt-get install ros-kinetic-desktop-full,报了一堆错误 mv: 无法获取'/var/lib/ni/licenses.xml.dpkg-old' 的 ...
- springboot使用fastJson作为json解析框架
springboot使用fastJson作为json解析框架 springboot默认自带json解析框架,默认使用jackson,如果使用fastjson,可以按照下列方式配置使用 〇.搭建spri ...