LINK

题意:给出n个数,每个数对间进行加或减,结果作为下一层的数,问最后的值为多少

思路:首先我们发现很像杨辉三角,然后考虑如何计算每个数对结果的贡献值,找规律可以发现当数的个数为偶数时,其所在层表达式即为二项式定理,且其中的数下标差都为2,故倒数第二层就是将第一层的数分为系数相同的两组,最后相减或相加。注意取模问题,使用逆元。注意n<=2的特殊情况

/** @Date    : 2017-07-01 13:43:26
* @FileName: 816D 组合 杨辉三角.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 2e5+20;
const double eps = 1e-8;
const LL mod = 1e9 + 7; int n;
LL a[N];
LL fac[N], Inv[N];
LL fpow(LL a, int n)
{
LL res = 1;
while(n > 0)
{
if(n & 1)
res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
void init()
{
fac[1] = Inv[1] = 1;
for(LL i = 2; i <= n; i++)
{
fac[i] = fac[i - 1] * i % mod;
Inv[i] = (mod - mod / i) * Inv[mod % i] % mod;
}
for(int i = 2; i <= n; i++)
{
Inv[i] = (Inv[i] * Inv[i - 1]) % mod;
}
} LL C(LL n, LL k)
{
if(k == 0 || n == k)
return 1LL;
else return (fac[n] * Inv[k] % mod) * Inv[n - k] % mod;
} int main()
{
while(cin >> n)
{
init();
MMF(a);
LL ans = 0;
for(int i = 0; i < n; i++) scanf("%lld", a + i); if(n % 2)
{
n--;
LL f = 1;
for(int i = 0; i < n; i++)
{
a[i] = (a[i] + a[i + 1] * f) % mod;
f *= -1;
}
}
for(int i = 0; i < n; i+=2)
{
ans = (ans + (a[i] + a[i + 1]*(n%4?1:-1) ) * C(n/2 - 1, i/2) % mod) % mod;
//printf("%lld~%lld\n", a[i]*C(n/2 - 1, i/2), a[i+1]*C(n/2 - 1, i/2));
}
if(ans < 0)
ans = (ans + mod) % mod;
if(n <= 2)//小于2的特殊情况
printf("%lld\n", (a[0] + a[1]) % mod);
else
printf("%lld\n", ans % mod); }
return 0;
}

816D.Karen and Test 杨辉三角 规律 组合的更多相关文章

  1. java编写杨辉三角

    import java.util.Scanner; /* *计算杨辉三角: * 规律:两边都是1 * 从第三行开始,上一行的前一个元素+与其并排的元素等于下面的元素 * 例如: * 1 * 11 * ...

  2. HDOJ(HDU) 1799 循环多少次?(另类杨辉三角)

    Problem Description 我们知道,在编程中,我们时常需要考虑到时间复杂度,特别是对于循环的部分.例如, 如果代码中出现 for(i=1;i<=n;i++) OP ; 那么做了n次 ...

  3. 基于visual Studio2013解决C语言竞赛题之0509杨辉三角

     题目

  4. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  5. Java数组的应用:案例:杨辉三角,三维数组,字符串数组

    //import java.util.Arrays; //包含Arrays //import java.util.Random; public class HelloWorld { public st ...

  6. Java_基础篇(杨辉三角)

    对于刚刚学Java的同学来说,杨辉三角是一个很好的例子. 杨辉三角让初学者更好的理解数组的定义和更好地去运用数组,特别是二维数组. 除此之外,还让初学者更好的掌握嵌套语句的使用. 以下是我的杨辉三角J ...

  7. 廖雪峰老师博客学习《通过生成器generator生成列表式杨辉三角》

    说明:这是我接触生成器概念后,自己对它的理解,可能比较表面,没深入理解,也可能有错误.后续校正错误认知,将有关generator作为一个tag了! 希望以后能活用. 先贴出自己写的triangles( ...

  8. [Java练习题] -- 1. 使用java打印杨辉三角

    package cn.fzm.demo1.array; import java.util.Scanner; /* * 需求:打印杨辉三角形(行数可以键盘录入) 1 1 1 1 2 1 1 3 3 1 ...

  9. 算法基础_递归_求杨辉三角第m行第n个数字

    问题描述: 算法基础_递归_求杨辉三角第m行第n个数字(m,n都从0开始) 解题源代码(这里打印出的是杨辉三角某一层的所有数字,没用大数,所以有上限,这里只写基本逻辑,要符合题意的话,把循环去掉就好) ...

随机推荐

  1. 感谢——Thunder团队

    团队软件的开发,已经进入第二个阶段——Beta版本了.回头看看,我们走过了很长的一段路,也经历了很多,有意见不一的争吵.有取得暂时成功时的欢欣鼓舞,我们就像一家人,就像那首歌中唱到的,“我们是一家人, ...

  2. 团队目标WBS及具体任务分工

    • 首先我们讨论了实验第一个冲刺周期要实现的功能,我们的初期目标. •  然后我们进一步梳理了第一阶段的任务和需求. •  之后对任务进行了划分和领取. •  最后每个人对自己的任务进行了估算,并约定 ...

  3. OpenFlow协议

    功能 1.0版本Openflow:控制器通过Openflow协议与交换机建立了安全通道(Sceure Channel),下发流表. 1.3版本Openflow:多控制器,多流表. 用于实现Contro ...

  4. 搜索引擎Elasticsearch REST API学习

    Elasticsearch为开发者提供了一套基于Http协议的Restful接口,只需要构造rest请求并解析请求返回的json即可实现访问Elasticsearch服务器.Elasticsearch ...

  5. nginx 配置文件简介

    主配置文件说明(先将注释部分去掉:sed -ri ‘/^#|[[:space:]]+#/d’ /etc/nginx/nginx.conf) (1)全局配置段 1:指明运行worker进程的用户和组 u ...

  6. 定时器应用-点击按钮,div向右移动

    需求是点击button,div就一直往右移动,给个条件left=800px就停止移动,通过定时器来控制. 代码如下: <!DOCTYPE html> <html> <he ...

  7. 对scrum站立会议的理解

    个人理解:首先我不明白scrum的含义,查了一下,scrum是迭代式增量软件开发过程,通常用于敏捷开发.scrum包括了一系列实践和预定义角色的过程骨架.scrum中的主要角色包括同项目经理类似的sc ...

  8. Struts2转换器配置和用法

    struts转换器:在B/S应用中,将字符串请求参数转换为相应的数据类型,是MVC框架提供的功能,而Struts2是很好的MVC框架实现者,理所当然,提供了类型转换机制. 一.类型转换的意义 对于一个 ...

  9. bzoj1031-字符加密

    环的问题,经典方法倍长串,求出后缀数组,扫一次sa,如果sa[i]小于等于n,那么就输出这个字符串结尾的位置(即s[sa[i]+n-1]). 代码 #include<cstdio> #in ...

  10. Java虚拟机的内存管理

    众所周知,Java程序员写的代码是没有办法控制Java对象的内存释放的,完全有JVM暗箱操作. 虽然程序员把内存的释放的任务都交给了Java虚拟机,但是并不代表Java程序就不存在内存泄漏. 反而,某 ...