题意:求解01背包价值的第K优解。

分析:

基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并

首先看01背包求最优解的状态转移方程:
\[dp\left[ j \right] = \max \left\{ {dp\left[ j \right],dp\left[ {j - a\left[ i \right].w} \right] + a\left[ i \right].v} \right\}\]

如果要求第K优解,那么状态 dp[j] 就应该是一个大小为K的数组dp[j][1..K]。(其中dp[j][k]表示背包大小为j时,第k优解的值。 )

Note:

     dp[j]是一个大小为K的数组,或者也可以简单地理解为在原来的方程中加了一维。

我们将利用手段维护 dp[j][1..K] 的有序性,然后原方程就可以解释为:
\[dp\left[ j \right]\left[ {1 \ldots K} \right] = merge\left\{ {dp\left[ j \right]\left[ k \right],dp\left[ {j - a\left[ i \right].w} \right]\left[ k \right] + a\left[ i \right].v|0 \le k \le K} \right\}\]

有序队列 dp[j-a[i].w]+a[i].v 则理解为在 dp[j-a[i].w][1..K] 的每个数上加上 a[i].v 后得到的有序队列。

合并这两个有序队列并将结果的前K项储存到dp[j][1..K]中的复杂度是O(K), 最后的答案是f[N] [V][K]。总的复杂度是O(VNK)。

---以上思路摘自 第K优解问题

【问题】如何合并两个队列?

已知队列P[1…K],Q[1…K],均为从大到小的顺序排列,求解队列R[1…K]是P,Q合并后的前K项。

首先,我们得考虑去重问题,故我们不能将P,Q队列合并再排序,取前K项了事。

我曾借助于STL中的SET,利用SET中的元素互异性解决去重问题,但很可惜超时。

精巧的解决方案:

//队列名为:alpha[1...K],beta[1...K]
alpha[k+1]=-1;
beta[k+1]=-1;
int t=1,p=1,q=1;
while(t<=k &&(p<=k && q<=k)){
if(alpha[p]>beta[q]) dp[j][t]=alpha[p++];
else dp[j][t]=beta[q++];
if(dp[j][t]!=dp[j][t-1]) t++;
}

Note:

  • 这里要注意(p<=k || q<=k)不能写成(p<=k && q<=k),因为某一个队列取完元素,并不等价于我们取到了前K个元素。
  • 我们需要初始化操作 alpha[K+1]=beta[K+1]=-1,只要初始化为负数均可。

我们知道背包中的解最小为0,不可能取负数,现在我们假设队列beta的下标q=k,且beta[p]=0,

表示队列beta已经取完了有效元素,而队列alpha中的下标p<k,但是alpha[p]=0.

那么下一轮循环中,条件if(alpha[p]>beta[q])不成立,会导致q++,数组下标溢出,导致循环提前异常退出,显然会导致结果出错。

所以我们这里必须初始化为负数,不可省略这一步。

  • 同时为了达到去重效果,我们需要将t下标从1开始计数,否则我们将找不到dp[j][t-1],导致程序异常终止,只有当前后两个数各异时,我们才移动下标t。

解答代码:

#include<string.h>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn_n 105
#define maxn_v 1005
#define maxn_k 35
int dp[maxn_v][maxn_k];
struct bone{
int v,w;
};
bone b[maxn_n];
int alpha[maxn_k],beta[maxn_k]; int main(){
//freopen("in.txt","r",stdin);
int cases;
scanf("%d",&cases);
while(cases--){
int n,v,k;
scanf("%d %d %d",&n,&v,&k);
for(int i=1;i<=n;i++)
scanf("%d",&b[i].v);
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++){
scanf("%d",&b[i].w);
for(int j=v;j>=b[i].w;j--){
for(int t=1;t<=k;t++){
alpha[t]=dp[j][t];
beta[t]=dp[j-b[i].w][t]+b[i].v;
}
alpha[k+1]=-1;
beta[k+1]=-1;
int t=1,p=1,q=1;
while(t<=k &&(p<=k ||q<=k)){
if(alpha[p]>beta[q]) dp[j][t]=alpha[p++];
else dp[j][t]=beta[q++];
if(dp[j][t]!=dp[j][t-1]) t++;
}
}
}
printf("%d\n",dp[v][k]);
}
}

hdu–2369 Bone Collector II(01背包变形题)的更多相关文章

  1. HDU 2639 Bone Collector II(01背包变形【第K大最优解】)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. HDU 2639 Bone Collector II (01背包,第k解)

    题意: 数据是常规的01背包,但是求的不是最大容量限制下的最佳解,而是第k佳解. 思路: 有两种解法: 1)网上普遍用的O(V*K*N). 2)先用常规01背包的方法求出背包容量限制下能装的最大价值m ...

  3. HDU 2639 Bone Collector II(01背包变型)

    此题就是在01背包问题的基础上求所能获得的第K大的价值. 详细做法是加一维去推当前背包容量第0到K个价值,而这些价值则是由dp[j-w[ i ] ][0到k]和dp[ j ][0到k]得到的,事实上就 ...

  4. HDU - 2639 Bone Collector II (01背包第k大解)

    分析 \(dp[i][j][k]\)为枚举到前i个物品,容量为j的第k大解.则每一次状态转移都要对所有解进行排序选取前第k大的解.用两个数组\(vz1[],vz2[]\)分别记录所有的选择情况,并选择 ...

  5. HDOJ(HDU).2602 Bone Collector (DP 01背包)

    HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...

  6. hdu 2602 Bone Collector(01背包)

    题意:给出包裹的大小v,然后给出n块骨头的价值value和体积volume,求出一路下来包裹可以携带骨头最大价值 思路:01背包 1.二维数组(不常用 #include<iostream> ...

  7. hdu 2602 Bone Collector(01背包)模板

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 Bone Collector Time Limit: 2000/1000 MS (Java/Ot ...

  8. 题解报告:hdu 2602 Bone Collector(01背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2602 Problem Description Many years ago , in Teddy’s ...

  9. hdu 2602 - Bone Collector(01背包)解题报告

    Bone Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

随机推荐

  1. Safari 下用 "location.href = filePath" 实现下载功能的诡异 bug

    Safari 下的一些诡异 bug 我们已经领教一二,比如前文中说的 无痕浏览模式下使用 localStorage 的 API 就会报错.今天我们要讲的是利用 location.href = file ...

  2. 如何使用 UC浏览器开发者版 进行移动端调试

    在 如何用 fiddler 代理调试本地手机页 一文中我们了解了如何用手机查看 PC 端写的网页(本地),但是我们只能看到页面效果,如果哪段 js 挂了,那部分样式失效了,我们该如何进行调试呢?今天为 ...

  3. stack overflow错误分析

    stack overflow(堆栈溢出)就是不顾堆栈中分配的局部数据块大小,向该数据块写入了过多的数据,导致数据越界,结果覆盖了老的堆栈数据. 或者解释为 在长字符串中嵌入一段代码,并将过程的返回地址 ...

  4. 各地IT薪资待遇讨论

    作为一个搞.net开发的程序员,在北京混了三年半,最近准备辞职到上海找工作.由于对上海的IT行业还不是很了解,在这里想让上海的同行们说下你们的情况,以方便我对自己在上海的定位,当然,其余城市的的同行们 ...

  5. 继续研究NDK

    继续研究NDK 我在阿里云服务器上搭建了Android ndk的开发平台,并且借助这一平台研究了NDK的内部细节. NDK提供了Android本地编程的接口,让你可以开发高效的依赖库,提高程序的速度, ...

  6. DbEntry在Vs2012里的配置

    dbentry官方的版本还不支持vs2012,要再vs2012中使用,必须做下调整 1:新建类库项目,然后添加dbentry 的dll引用. 2:在建好的类库项目中.csproj 新添加了类库项目后, ...

  7. [HDU5902]GCD is Funny(xjb搞)

    题意:n个数每次选三个数删除,取其中两个数将gcd放回去两次,问最后剩的数可能是多少 分析:考虑最优情况: 先拿出三个数,留下两个x,x  再来一个y,(x,x,y)我们可以删去一个x,留下两个gcd ...

  8. CSS与JQuery的相关问题

    文字隐藏:p div里面的文字过长时隐藏文字: overflow:hidden; text-overflow:ellipsis; white-space:nowrap; --------------- ...

  9. 既不删除, 也不生成DS_store

    defaults write com.apple.desktopservices DSDontWriteNetworkStores true sudo find / -name ".DS_S ...

  10. SpringMVC学习--springmvc原理

    简介 springmvc是spring框架的一个模块,springmvc和spring无需通过中间整合层进行整合.springmvc是一个基于mvc的web框架. spring的结构图: mvc在b/ ...