http://www.lydsy.com/JudgeOnline/problem.php?id=4008 (题目链接)

题意

  给出n个技能,每个技能按顺序有p[i]的可能性释放,可以造成d[i]的伤害。每一轮游戏只能发动一个技能,问r轮游戏期望造成的伤害。

Solution

  刚了半个下午的dp,然而Wa了又调,调了又Wa,发现整个dp都是萎的,然后删了重写。。。无奈,看了题解。

  http://blog.csdn.net/vmurder/article/details/46461649

  get了求期望的新姿势。。。$${ f_{i,j} = f_{i-1,j} × (1 - p_{i-1})^j + f_{i-1,j+1}×(1-(1-p_{i-1})^{j+1})}$$

  其中${f_{i-1,j} × (1 - p_{i-1})^j}$表示第${i-1}$张技能牌被所有机会跳过。

  其中${f_{i-1,j+1}×(1-(1-p_{i-1})^{j+1})}$表示第${i-1}$张技能牌被其中一个机会选中,逆向思考,即1-被所有机会跳过的概率。

  那么第${i}$张技能牌发动的概率是多少呢?显然:${P_i=\sum_{j=1}^rf_{i,j}×(1-(1-p_{i})^j)}$

代码

// bzoj4008
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 1<<30
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=500;
int d[maxn],n,r;
double p[maxn],f[maxn][maxn]; double power(double a,int b) {
double res=1;
while (b) {
if (b&1) res*=a;
b>>=1;a*=a;
}
return res;
}
int main() {
int T;scanf("%d",&T);
while (T--) {
memset(f,0,sizeof(f));
scanf("%d%d",&n,&r);
for (int i=1;i<=n;i++) scanf("%lf%d",&p[i],&d[i]);
f[0][r]=1;double ans=0;
for (int i=1;i<=n;i++)
for (int j=1;j<=r;j++) {
f[i][j]=f[i-1][j]*power(1-p[i-1],j)+f[i-1][j+1]*(1-power(1-p[i-1],j+1));
ans+=f[i][j]*(1-power(1-p[i],j))*d[i];
}
printf("%.10lf\n",ans);
}
return 0;
}

【bzoj4008】 HNOI2015—亚瑟王的更多相关文章

  1. 概率DP——BZOJ4008 [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...

  2. Bzoj4008 [HNOI2015]亚瑟王

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special Judge Submit: 1009  Solved: 605[Submit][Status] ...

  3. BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...

  4. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

  5. BZOJ4008 [HNOI2015]亚瑟王 【概率dp】

    题目链接 BZOJ4008 题解 要求所有牌造成伤害的期望,就是求每一张牌发动的概率\(g[i]\) 我们发现一张牌能否发动,还与其前面的牌是否发动有关 那我们设\(f[i][j]\)表示前\(i\) ...

  6. bzoj4008: [HNOI2015]亚瑟王【期望dp】

    一个特别神奇的dp,特别厉害. f(i, j) 表示 有 j 轮发动技能的牌在 [1, i] 另外的m - j轮在[i + 1, n]之间的概率. 怎么转移呢? 首先考虑i这张牌不选的情况,f(i - ...

  7. BZOJ4008 : [HNOI2015]亚瑟王(期望dp)

    题意 略(看了20min才看懂...) 题解 我一开始天真地一轮轮推期望,发现根本不好算... 唉~ 不会做就只能抄题解咯 看了一波DOFY大佬的解法qwq 发现有句神奇的话 记住,期望要倒着推... ...

  8. bzoj4008: [HNOI2015]亚瑟王 dp

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4008 思路 神仙啊 \(f[i][j]表示第i个点有j次机会(不管成功与否)\) \(f ...

  9. 2018.10.13 bzoj4008: [HNOI2015]亚瑟王(概率dp)

    传送门 马上2点考初赛了,心里有点小紧张. 做道概率dp压压惊吧. 话说这题最开始想错了. 最开始的方法是考虑f[i][j]f[i][j]f[i][j]表示第iii轮出牌为jjj的概率. 然后用第ii ...

  10. 【文文殿下】[BZOJ4008] [HNOI2015] 亚瑟王

    题解 这是一个经典的概率DP模型 设\(f_{i,j}\)表示考虑到前\(i\)张牌,有\(j\)轮没打出牌的可能性,那么显然\(f_{0,r} = 1\). 考虑第\(i+1\)张牌,他可能在剩下的 ...

随机推荐

  1. 再谈HashMap

    HashMap是一个高效通用的数据结构,它在每一个Java程序中都随处可见.先来介绍些基础知识.你可能也知 道,HashMap使用key的hashCode()和equals()方法来将值划分到不同的桶 ...

  2. jquery瀑布流的制作

    首先,还是来看一下炫酷的页面: 今天就边做边说了: 一.准备工作 新建css,js,img文件夹存放相应文件,并在demo.html文件中引入外部文件(注意要把jquery文件引入),这里就不过多描述 ...

  3. 如何解决MSI类型的Sharepoint Server2016 安装即点即用的office 2016 plus问题

    前提 在sharepoint server 2016安装office 2016 plus提示如下错误: 解决方法 Ø 概念 1. 即点和即用的概念:即点即用是一种通过 Internet 安装和更新 O ...

  4. 读取数据库数据,并将数据整合成3D饼图在jsp中显示

    首先我将生成饼图的方法独立写成一个PieChar.java类,详细代码如下:(数据库需要自己建,如有需要的话) import java.io.IOException; import java.sql. ...

  5. RadioButton与CheckBox

    笔者长期从事于数据库的开发,算了,不提当年了,因为一直用的是小语种(PowerBuilder),还是来说说这两个最常见的控件吧! RadioButton(单选)和CheckBox(多选) 先来看看继承 ...

  6. 文件缓存(配合JSON数组)

    1.  写入缓存:建立文件夹,把list集合里面的数组转换为JSON数组,存入文件夹2.  读取缓存:把JSON数组从文件夹里面读取出来,然后放入list集合,返回list集合 private fin ...

  7. 在 CentOS7 上将自定义的 jar 包注册为 linux 服务 service

    在 CentOS7 上将自定义的 jar 包注册为 linux 服务 service 1.在 /etc/rc.d/init.d/ 目录下创建一个名字和服务名完全相同的 shell 脚本文件 joyup ...

  8. js生成和下载二维码

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/stri ...

  9. Mongodb 3.2 Manual阅读笔记:CH9 存储

    9. 存储 9. 存储 9.1 存储引擎 9.1.1 WiredTiger存储引擎 9.1.1.1 文档级别并发 9.1.1.2 快照和检查点 9.1.1.3 Journaling 9.1.1.4 压 ...

  10. Java线程并发:知识点

    Java线程并发:知识点   发布:一个对象是使它能够被当前范围之外的代码所引用: 常见形式:将对象的的引用存储到公共静态域:非私有方法中返回引用:发布内部类实例,包含引用.   逃逸:在对象尚未准备 ...