http://www.lydsy.com/JudgeOnline/problem.php?id=4008 (题目链接)

题意

  给出n个技能,每个技能按顺序有p[i]的可能性释放,可以造成d[i]的伤害。每一轮游戏只能发动一个技能,问r轮游戏期望造成的伤害。

Solution

  刚了半个下午的dp,然而Wa了又调,调了又Wa,发现整个dp都是萎的,然后删了重写。。。无奈,看了题解。

  http://blog.csdn.net/vmurder/article/details/46461649

  get了求期望的新姿势。。。$${ f_{i,j} = f_{i-1,j} × (1 - p_{i-1})^j + f_{i-1,j+1}×(1-(1-p_{i-1})^{j+1})}$$

  其中${f_{i-1,j} × (1 - p_{i-1})^j}$表示第${i-1}$张技能牌被所有机会跳过。

  其中${f_{i-1,j+1}×(1-(1-p_{i-1})^{j+1})}$表示第${i-1}$张技能牌被其中一个机会选中,逆向思考,即1-被所有机会跳过的概率。

  那么第${i}$张技能牌发动的概率是多少呢?显然:${P_i=\sum_{j=1}^rf_{i,j}×(1-(1-p_{i})^j)}$

代码

// bzoj4008
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 1<<30
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=500;
int d[maxn],n,r;
double p[maxn],f[maxn][maxn]; double power(double a,int b) {
double res=1;
while (b) {
if (b&1) res*=a;
b>>=1;a*=a;
}
return res;
}
int main() {
int T;scanf("%d",&T);
while (T--) {
memset(f,0,sizeof(f));
scanf("%d%d",&n,&r);
for (int i=1;i<=n;i++) scanf("%lf%d",&p[i],&d[i]);
f[0][r]=1;double ans=0;
for (int i=1;i<=n;i++)
for (int j=1;j<=r;j++) {
f[i][j]=f[i-1][j]*power(1-p[i-1],j)+f[i-1][j+1]*(1-power(1-p[i-1],j+1));
ans+=f[i][j]*(1-power(1-p[i],j))*d[i];
}
printf("%.10lf\n",ans);
}
return 0;
}

【bzoj4008】 HNOI2015—亚瑟王的更多相关文章

  1. 概率DP——BZOJ4008 [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...

  2. Bzoj4008 [HNOI2015]亚瑟王

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special Judge Submit: 1009  Solved: 605[Submit][Status] ...

  3. BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...

  4. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

  5. BZOJ4008 [HNOI2015]亚瑟王 【概率dp】

    题目链接 BZOJ4008 题解 要求所有牌造成伤害的期望,就是求每一张牌发动的概率\(g[i]\) 我们发现一张牌能否发动,还与其前面的牌是否发动有关 那我们设\(f[i][j]\)表示前\(i\) ...

  6. bzoj4008: [HNOI2015]亚瑟王【期望dp】

    一个特别神奇的dp,特别厉害. f(i, j) 表示 有 j 轮发动技能的牌在 [1, i] 另外的m - j轮在[i + 1, n]之间的概率. 怎么转移呢? 首先考虑i这张牌不选的情况,f(i - ...

  7. BZOJ4008 : [HNOI2015]亚瑟王(期望dp)

    题意 略(看了20min才看懂...) 题解 我一开始天真地一轮轮推期望,发现根本不好算... 唉~ 不会做就只能抄题解咯 看了一波DOFY大佬的解法qwq 发现有句神奇的话 记住,期望要倒着推... ...

  8. bzoj4008: [HNOI2015]亚瑟王 dp

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4008 思路 神仙啊 \(f[i][j]表示第i个点有j次机会(不管成功与否)\) \(f ...

  9. 2018.10.13 bzoj4008: [HNOI2015]亚瑟王(概率dp)

    传送门 马上2点考初赛了,心里有点小紧张. 做道概率dp压压惊吧. 话说这题最开始想错了. 最开始的方法是考虑f[i][j]f[i][j]f[i][j]表示第iii轮出牌为jjj的概率. 然后用第ii ...

  10. 【文文殿下】[BZOJ4008] [HNOI2015] 亚瑟王

    题解 这是一个经典的概率DP模型 设\(f_{i,j}\)表示考虑到前\(i\)张牌,有\(j\)轮没打出牌的可能性,那么显然\(f_{0,r} = 1\). 考虑第\(i+1\)张牌,他可能在剩下的 ...

随机推荐

  1. 如何:加载分页结果(WCF 数据服务)

    WCF 数据服务 允许数据服务限制单个响应源中返回的实体数.在此情况下,源中的最后一项包含指向下一页数据的链接.通过调用执行 DataServiceQuery 时返回的 QueryOperationR ...

  2. Java 内存区域与内存溢出

    内存区域 Java 虚拟机在执行 Java 程序的过程中会把他所管理的内存划分为若干个不同的数据区域.Java 虚拟机规范将 JVM 所管理的内存分为以下几个运行时数据区:程序计数器.Java 虚拟机 ...

  3. Spring的IOC和AOP之深剖

    今天,既然讲到了Spring 的IOC和AOP,我们就必须要知道 Spring主要是两件事: 1.开发Bean:2.配置Bean.对于Spring框架来说,它要做的,就是根据配置文件来创建bean实例 ...

  4. MySQL动态字符串处理DYNAMIC_STRING

    MySQL中,常常会看到一些关于动态字符串的处理,列如:DYNAMIC_STRING. 为了记录动态字符串的实际长度,缓冲区的最大长度,以及每次字符串需要调整时,及时分配新的内存,以及调整长度.MyS ...

  5. JS正则表达式(JavaScript regular expression)

    RegExp直接量和对象的创建 就像字符串和数字一样,程序中每个取值相同的原始类型直接量均表示相同的值,这是显而易见的.程序运行时每次遇到对象直接量(初始化表达式)诸如{}和[]的时候都会创建新对象. ...

  6. javascript操作系统检测

    function detectOS() { var sUserAgent = navigator.userAgent;console.log(sUserAgent); var isWin = (nav ...

  7. iOS 3D 之 SceneKit框架Demo分析

    Scene Kit 是Apple 向 OS X 开发者们提供的 Cocoa 下的 3D 渲染框架. Scene Kit 建立在 OpenGL 的基础上,包含了如光照.模型.材质.摄像机等高级引擎特性, ...

  8. ASP.NET的六大内置对象

    ASP.NET 六大内置对象(System.Web.UI.Page类): 1.Response 2.Request 3.Server 4.Application 5.Session 6.Cooki R ...

  9. ALM损坏后的恢复步骤

    ALM是HP出品的软件开发生命周期软件,其全称是Application Lifecycle Management,其采用B/S结构,从需求,业务模型到测试用例和缺陷管理亦应具有,满足了一般软件企业对开 ...

  10. 转载 NPOI Excel 单元格背景颜色对照表

    NPOI Excel 单元格颜色对照表,在引用了 NPOI.dll 后可通过 ICellStyle 接口的 FillForegroundColor 属性实现 Excel 单元格的背景色设置,FillP ...