1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况.

2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体、已燃气体的混合物; 一种是爆炸 (detonation): 火焰以 $\geq 2000\ m/s$ 的速度向前传播, 此时, Chapman (1899) 与 Jouquet (1905) 认为化学反应过程是瞬时发生并完成的, 即有一波前 (wavefront) 进入未燃气体, 并瞬时地将它变成已燃气体.

3.  本章讨论爆燃.

[物理学与PDEs]第4章第1节 引言的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第1章第1节 引言

    1. 电动力学研究的对象是电磁场, 研究电磁场的基本属性---运动规律及它和带电物质的相互作用. 2. 场, 物质的一种存在方式. 3. Maxwell 方程组是电动力学中的基本方程, 是一切有关电磁 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  6. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

随机推荐

  1. leetcode 169. Majority Element 、229. Majority Element II

    169. Majority Element 求超过数组个数一半的数 可以使用hash解决,时间复杂度为O(n),但空间复杂度也为O(n) class Solution { public: int ma ...

  2. 在SQL Server中如何进行UPDATE TOP .....ORDER BY?

    前言 今天在导入数据到系统后需要根据时间排序对刚导入的TOP N条进行数据更新,之前没遇到过UPDATE TOP...ORDER BY,以此作为备忘录. SQL SERVER之UPDATE TOP.. ...

  3. vi/vim 使用

    1.  vim一共有4个模式:(linux下最好用的编辑器) 正常模式 (Normal-mode) 插入模式 (Insert-mode) 命令模式 (Command-mode) 可视模式 (Visua ...

  4. Java基础——枚举详解

    前言: 在第一次学习面向对象编程时,我记得最深的一句话就是“万物皆对象”.于是我一直秉承着这个思想努力的学习着JAVA,直到学习到枚举(Enum)时,看着它颇为奇怪的语法……我一直在想,这TM是个什么 ...

  5. mysql常用权限命令、乱码及其他问题记录

    用户管理 use mysql; 查看   select host,user,password from user ; 创建 create user  xuhong IDENTIFIED by 'xuh ...

  6. 如何给框架添加API接口日志

    前言 用的公司的框架,是MVC框架,看了下里面的日志基类,是操作日志,对增删改进行记录, 夸张的是一张业务的数据表 需要一张专门的日志表进行记录, 就是说你写个更新,添加的方法都必须写一遍操作日志,代 ...

  7. Building Forms with PowerShell – Part 1 (The Form)

    For those of you familiar with Scripting languages you are probably used to using alternate applicat ...

  8. 【C/C++】任意进制转换

    进制转换:R进制->10进制:10进制->R进制. #include<bits/stdc++.h> using namespace std; /*函数:r进制转换成10进制*/ ...

  9. [Ynoi2018]五彩斑斓的世界

    题目描述 二阶堂真红给了你一个长为n的序列a,有m次操作 1.把区间[l,r]中大于x的数减去x 2.查询区间[l,r]中x的出现次数 题解 做YNOI真**爽... 我们发现这道题的操作非常诡异,把 ...

  10. Linux-GitLab安装及汉化

    gitlab 安装及汉化 GitLab简介: GitLab是一个用于仓库管理系统的开源项目.使用Git作为代码管理工具,并在此基础上搭建起来的Web服务.可通过Web界面进行访问公开的或者私人项目.它 ...