Strictly Positive Matrix

题解:

如果原来的 a[i][j] = 0, 现要 a[i][j] = 1, 那么等于 sum{a[i][k] + a[k][j]} > 1。

如果把a[i][j]视作 i -> j 是否能达到。

那么对于上述的那个方程来说,相当于 i先走到k, k再走到j。 单向边。

所以化简之后,就是询问一幅图是不是只有一个强连通缩点。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 2e3 + ;
const int M = N * N;
int head[N], nt[M], to[M], tot;
void add(int u, int v){
to[tot] = v;
nt[tot] = head[u];
head[u] = tot++;
}
int belong[N], dfn[N], low[N], now_time, scc_cnt;
stack<int> s;
void dfs(int u){
dfn[u] = low[u] = ++now_time;
s.push(u);
for(int i = head[u]; ~i; i = nt[i]){
if(!dfn[to[i]]) dfs(to[i]);
if(!belong[to[i]]) low[u] = min(low[u], low[to[i]]);
}
if(dfn[u] == low[u]){
++scc_cnt;
int now;
while(){
now = s.top(); s.pop();
belong[now] = scc_cnt;
if(now == u) break;
}
}
}
void scc(int n){
now_time = scc_cnt = ;
for(int i = ; i <= n; ++i)
if(!belong[i]) dfs(i);
}
int main(){
memset(head, -, sizeof(head));
int n, t;
scanf("%d", &n);
for(int i = ; i <= n; ++i){
for(int j = ; j <= n; ++j){
scanf("%d", &t);
if(t) add(i, j);
}
}
scc(n);
// cout << "?" << endl;
if(scc_cnt ^ ) puts("NO");
else puts("YES");
return ;
}

CodeForces 402 E Strictly Positive Matrix的更多相关文章

  1. [CF] 402 E. Strictly Positive Matrix

    一个矩阵,自乘无限次后能否全为正数? 如果n比较小,可以二分一下,但是这里n很大,乘一次都无法接受 可以考虑实际含义:矩阵看成邻接矩阵,那么0就是没有边,其余就是有边. 我们知道邻接矩阵自乘k次就相当 ...

  2. Codeforces Round #236 (Div. 2)E. Strictly Positive Matrix(402E)

    E. Strictly Positive Matrix   You have matrix a of size n × n. Let's number the rows of the matrix f ...

  3. codeforces 402E - Strictly Positive Matrix【tarjan】

    首先认识一下01邻接矩阵k次幂的意义:经过k条边(x,y)之间的路径条数 所以可以把矩阵当成邻接矩阵,全是>0的话意味着两两之间都能相连,也就是整个都要在一个强连通分量里,所以直接tarjan染 ...

  4. [CF #236 (Div. 2) E] Strictly Positive Matrix(强联通分量)

    题目:http://codeforces.com/contest/402/problem/E 题意:给你一个矩阵a,判断是否存在k,使得a^k这个矩阵全部元素都大于0 分析:把矩阵当作01矩阵,超过1 ...

  5. CF402E Strictly Positive Matrix 传递闭包用强连通分量判断

    题目链接:http://codeforces.com/problemset/problem/402/E /**算法分析: 这道题考察了图论基本知识,就是传递闭包,可以构图用强联通分量来判断 */ #i ...

  6. CF402E Strictly Positive Matrix(矩阵,强联通分量)

    题意 给定一个 n∗n 的矩阵 A,每个元素都非负判断是否存在一个整数 k 使得 A^k 的所有元素 >0 n≤2000(矩阵中[i][i]保证为1) 题解 考虑矩阵$A*A$的意义 ,设得到的 ...

  7. Codeforces #402

    目录 Codeforces #402 Codeforces #402 Codeforces 779A Pupils Redistribution 链接:http://codeforces.com/co ...

  8. Educational Codeforces Round 9 F. Magic Matrix 最小生成树

    F. Magic Matrix 题目连接: http://www.codeforces.com/contest/632/problem/F Description You're given a mat ...

  9. codeforces 402 D. Upgrading Array(数论+贪心)

    题目链接:http://codeforces.com/contest/402/problem/D 题意:给出一个a串和素数串b .f(1) = 0; p为s的最小素因子如果p不属于b , 否则 . a ...

随机推荐

  1. canal同步MySQL数据到ES6.X

    背景: 最近一段时间公司做一个技术架构的更改,由于之前使用的solr和目前的业务不太匹配,具体原因不多说啦.所以要把数据放到Elasticsearch中进行快速的搜索,这是便产生了一个数据迁移的需求, ...

  2. Java集合系列(三):HashSet、LinkedHashSet、TreeSet的使用方法及区别

    本篇博客主要讲解Set接口的三个实现类HashSet.LinkedHashSet.TreeSet的使用方法以及三者之间的区别. 注意:本文中代码使用的JDK版本为1.8.0_191 1. HashSe ...

  3. SWT 注意事项

    一:GridData (1) 将 GridData 的 widthHint 设置为0,可以解决控件大小会随着这其默认值长度大小而改变的问题.

  4. JavaSE(一)Java程序的三个基本规则-组织形式,编译运行,命名规则

    一.Java程序的组织形式       Java程序是一种纯粹的面向对象的程序设计语言,因此Java程序必须以类(class)的形式存在,类(class)是Java程序的最小程序单位.       J ...

  5. RGW 学习 前言

    对于CEPH的学习已经有一段的时间了,最近的一段时间都是集中在RGW网关这一方面,所以准备将学习的过程以及源代码的分析,将以随笔的形式记录下来. 每天更新一章.

  6. gdb调试和编译后运行结果不一致

    今天在看代码时,遇到这么一段代码,我但是用g++编译了,运行发现有Segmentation fault. 然后就用gdb跟进去看看,可是gdb却正常执行了.不知道什么原因. #include < ...

  7. python3学习-requests使用

    前面我们讲过了urllib模块,知道他是用于网络请求的,这一节讲的requests还是用于网络请求的,只不过urllib是官方模块,而requests是第三方的模块.用过的人都说他才是'人类使用的', ...

  8. ZooKeeper系列(一)—— ZooKeeper 简介及核心概念

    一.Zookeeper简介 Zookeeper 是一个开源的分布式协调服务,目前由 Apache 进行维护.Zookeeper 可以用于实现分布式系统中常见的发布/订阅.负载均衡.命令服务.分布式协调 ...

  9. Docker 方式部署 Solo 博客系统总结

      此篇为Docker部署方式,另有Tomcat部署方式,请参考文章<Tomcat 方式部署 Solo 博客系统总结>   最近搭建了一个博客系统,作为自己的主页,方便记录一些平时所见所闻 ...

  10. Git 实用技巧:git stash

    我们经常会遇到这样的情况: 正在dev分支开发新功能,做到一半时有人过来反馈一个bug,让马上解决,但是新功能做到了一半你又不想提交,这时就可以使用git stash命令先把当前进度保存起来.然后切换 ...