Strictly Positive Matrix

题解:

如果原来的 a[i][j] = 0, 现要 a[i][j] = 1, 那么等于 sum{a[i][k] + a[k][j]} > 1。

如果把a[i][j]视作 i -> j 是否能达到。

那么对于上述的那个方程来说,相当于 i先走到k, k再走到j。 单向边。

所以化简之后,就是询问一幅图是不是只有一个强连通缩点。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 2e3 + ;
const int M = N * N;
int head[N], nt[M], to[M], tot;
void add(int u, int v){
to[tot] = v;
nt[tot] = head[u];
head[u] = tot++;
}
int belong[N], dfn[N], low[N], now_time, scc_cnt;
stack<int> s;
void dfs(int u){
dfn[u] = low[u] = ++now_time;
s.push(u);
for(int i = head[u]; ~i; i = nt[i]){
if(!dfn[to[i]]) dfs(to[i]);
if(!belong[to[i]]) low[u] = min(low[u], low[to[i]]);
}
if(dfn[u] == low[u]){
++scc_cnt;
int now;
while(){
now = s.top(); s.pop();
belong[now] = scc_cnt;
if(now == u) break;
}
}
}
void scc(int n){
now_time = scc_cnt = ;
for(int i = ; i <= n; ++i)
if(!belong[i]) dfs(i);
}
int main(){
memset(head, -, sizeof(head));
int n, t;
scanf("%d", &n);
for(int i = ; i <= n; ++i){
for(int j = ; j <= n; ++j){
scanf("%d", &t);
if(t) add(i, j);
}
}
scc(n);
// cout << "?" << endl;
if(scc_cnt ^ ) puts("NO");
else puts("YES");
return ;
}

CodeForces 402 E Strictly Positive Matrix的更多相关文章

  1. [CF] 402 E. Strictly Positive Matrix

    一个矩阵,自乘无限次后能否全为正数? 如果n比较小,可以二分一下,但是这里n很大,乘一次都无法接受 可以考虑实际含义:矩阵看成邻接矩阵,那么0就是没有边,其余就是有边. 我们知道邻接矩阵自乘k次就相当 ...

  2. Codeforces Round #236 (Div. 2)E. Strictly Positive Matrix(402E)

    E. Strictly Positive Matrix   You have matrix a of size n × n. Let's number the rows of the matrix f ...

  3. codeforces 402E - Strictly Positive Matrix【tarjan】

    首先认识一下01邻接矩阵k次幂的意义:经过k条边(x,y)之间的路径条数 所以可以把矩阵当成邻接矩阵,全是>0的话意味着两两之间都能相连,也就是整个都要在一个强连通分量里,所以直接tarjan染 ...

  4. [CF #236 (Div. 2) E] Strictly Positive Matrix(强联通分量)

    题目:http://codeforces.com/contest/402/problem/E 题意:给你一个矩阵a,判断是否存在k,使得a^k这个矩阵全部元素都大于0 分析:把矩阵当作01矩阵,超过1 ...

  5. CF402E Strictly Positive Matrix 传递闭包用强连通分量判断

    题目链接:http://codeforces.com/problemset/problem/402/E /**算法分析: 这道题考察了图论基本知识,就是传递闭包,可以构图用强联通分量来判断 */ #i ...

  6. CF402E Strictly Positive Matrix(矩阵,强联通分量)

    题意 给定一个 n∗n 的矩阵 A,每个元素都非负判断是否存在一个整数 k 使得 A^k 的所有元素 >0 n≤2000(矩阵中[i][i]保证为1) 题解 考虑矩阵$A*A$的意义 ,设得到的 ...

  7. Codeforces #402

    目录 Codeforces #402 Codeforces #402 Codeforces 779A Pupils Redistribution 链接:http://codeforces.com/co ...

  8. Educational Codeforces Round 9 F. Magic Matrix 最小生成树

    F. Magic Matrix 题目连接: http://www.codeforces.com/contest/632/problem/F Description You're given a mat ...

  9. codeforces 402 D. Upgrading Array(数论+贪心)

    题目链接:http://codeforces.com/contest/402/problem/D 题意:给出一个a串和素数串b .f(1) = 0; p为s的最小素因子如果p不属于b , 否则 . a ...

随机推荐

  1. STL 大法好

    #include <vector>  1.支持随机访问,但不支持在任意位置O(1)插入:    2.定义:  ```cpp      vector<int> a;  ```  ...

  2. 初试kafka消息队列中间件一 (只适合初学者哈)

    初试kafka消息队列中间件一 今天闲来有点无聊,然后就看了一下关于消息中间件的资料, 简单一点的理解哈,网上都说的太高大上档次了,字面意思都想半天: 也就是用作消息通知,比如你想告诉某某你喜欢他,或 ...

  3. 佳木斯集训Day2

    D2好点了,最起码不像之前那么水 T1按照常规操作是个找规律,类似于括号匹配的题,但是又不是,推进栈里,然后看最长的左括号有多少个,然后直接cout就可以了 #include <bits/std ...

  4. 从原理层面掌握@RequestAttribute、@SessionAttribute的使用【一起学Spring MVC】

    每篇一句 改我们就改得:取其精华,去其糟粕.否则木有意义 前言 如果说知道@SessionAttributes这个注解的人已经很少了,那么不需要统计我就可以确定的说:知道@RequestAttribu ...

  5. 利用python自动生成verilog模块例化模板

    一.前言 初入职场,一直忙着熟悉工作,就没什么时间更新博客.今天受“利奇马”的影响,只好宅在家中,写写技术文章.芯片设计规模日益庞大,编写脚本成了芯片开发人员必要的软技能.模块端口动不动就几十上百个, ...

  6. Android实现多语言so easy

    微信公众号:CodingAndroid CSDN:http://blog.csdn.net/xinpengfei521声明:本文由CodingAndroid原创,未经授权,不可随意转载! 最近,我们公 ...

  7. cs231n---强化学习

    介绍了基于价值函数和基于策略梯度的两种强化学习框架,并介绍了四种强化学习算法:Q-learning,DQN,REINFORCE,Actot-Critic 1 强化学习问题建模 上图中,智能体agent ...

  8. openldap介绍和使用

    openldap介绍和使用 为什么会有本文? 早期,公司是没有统一认证这个东西的,所以各自玩各自的.于是, confluence一个用户体系,gitlab一个用户体系,Jenkins一个用户体系等等, ...

  9. RDIFramework.NET敏捷开发框架通过SignalR技术整合即时通讯(IM)

    1.引言 即时通讯(IM)是RDIFramework.NET敏捷开发框架全新提供的一个基于Web的即时通讯.内部聊天沟通的工具.界面美观大方对于框架内部进行消息的沟通非常方便.基于RDIFramewo ...

  10. 在Docker for Windows中运行GUI程序

    Docker运行GUI原理 Docker目前大多应用在服务器领域,那么在Docker中可以运行GUI程序吗?怀着好奇心google了一番,还真有人写了一篇文章 running-gui-applicat ...