L: New Game!

题目描述:

Eagle Jump公司正在开发一款新的游戏。泷本一二三作为其员工,获得了提前试玩的机会。现在她正在试图通过一个迷宫。

这个迷宫有一些特点。为了方便描述,我们对这个迷宫建立平面直角坐标系。迷宫中有两条平行直线 L\_1:Ax+By+C\_1=0L1​:Ax+By+C1​=0, L\_2:Ax+By+C\_2=0L2​:Ax+By+C2​=0,还有 nn 个圆 C\_i:(x-x\_i)^2+(y-y\_i)^2={r\_i}^2Ci​:(x−xi​)2+(y−yi​)2=ri​2。角色在直线上、圆上、圆内行走不消耗体力。在其他位置上由SS点走到TT点消耗的体力为SS和TT的欧几里得距离。

泷本一二三想从 L\_1L1​ 出发,走到 L\_2L2​ 。请计算最少需要多少体力。

输入:

第一行五个正整数 n,A,B,C\_1,C\_2n,A,B,C1​,C2​ (1\le n \le 1000, -10000 \le A,B,C\_1,C\_2 \le 10000)(1≤n≤1000,−10000≤A,B,C1​,C2​≤10000),其中 A,BA,B 不同时为 0。

接下来 nn 行每行三个整数 x,y,r(-10000 \le x,y \le 10000, 1\le r \le 10000)x,y,r(−10000≤x,y≤10000,1≤r≤10000) 表示一个圆心为 (x,y)(x,y),半径为 rr 的圆。

输出:

仅一行一个实数表示答案。与标准答案的绝对误差或者相对误差不超过 10^{-4}10−4 即算正确。

样例输入

2 0 1 0 -4
0 1 1
1 3 1

样例输出

0.236068

L1 到 L2 之间连边权值 |C1−C2|  / √ A2+B2

线 L 与圆 i 之间连边权值 max(0, d(Oi , L1) − ri)

圆 i 与圆 j 之间连边权值 max(0, d(Oi , Oj ) − ri − rj )

求 L1 到 L2 的最短路即可。

#include<bits/stdc++.h>
#define ios1 ios::sync_with_stdio(0)
#define ios2 cin.tie(0)
#define inf 0x3f3f3f3f
using namespace std;
const int maxn = 5000;
int n, A, B, C1, C2;
double Map[maxn][maxn]; struct node{
double x, y, r;
}circle[maxn]; void init() {
for(int i = 0 ; i <= n + 1; i++){
for(int j = 0; j <= n + 1; j++) {
if(i == j)Map[i][j] = 0;
else Map[i][j] = inf;
}
}
} bool cmp (node p, node q) {
if(p.x == q.x)return p.y < p.y;
return p.x < p.y;
} double dis[maxn];
bool vis[maxn]; void Dijkstra() {
for (int i = 0; i <= n+1; i++) {
dis[i] = Map[0][i];
}
vis[0] = 1;
for (int i = 0; i < n+1; i++) {
double MIN = inf;
int x = -1;
for (int j = 0; j <= n+1; j++) {
if (!vis[j] && dis[j]<MIN) {
MIN = dis[j];
x = j;
}
}
vis[x] = 1;
for (int j = 0; j <= n+1; j++) {
if (!vis[j] && MIN + Map[x][j]<dis[j]) {
dis[j] = Map[x][j] + MIN;
}
}
}
} int main() {
ios1; ios2;
while(cin >> n >> A >> B >> C1 >> C2) {
for(int i = 1; i <= n; i++) {
cin >> circle[i].x >> circle[i].y >> circle[i].r;
}
init();
Map[0][n+1] = Map[n+1][0] = abs(C1-C2)/sqrt(A*A+B*B);
for(int i = 1; i <= n; i++) {
double k = abs(A*circle[i].x + B*circle[i].y + C1)/sqrt(A*A+B*B) - circle[i].r;
if(k < 0)k = 0;
Map[0][i] = Map[i][0] = k;
}
for(int i = 1; i <= n; i++) {
double k = abs(A*circle[i].x + B*circle[i].y + C2)/sqrt(A*A+B*B) - circle[i].r;
if(k < 0)k = 0;
Map[i][n+1] = Map[n+1][i] = k;
}
for(int i = 1 ; i <= n; i++) {
for(int j = 1; j <= n; j++) {
if(i != j){
double k = sqrt(abs(circle[i].x - circle[j].x) * abs(circle[i].x - circle[j].x) + abs(circle[i].y - circle[j].y) * abs(circle[i].y - circle[j].y)) - circle[i].r - circle[j].r;
if(k < 0)k = 0;
Map[i][j] = k;
}
}
}
memset(vis, 0, sizeof(vis));
Dijkstra();
printf("%lf\n", dis[n+1]);
}
return 0;
}

CCPC-Wannafly Camp #2 (部分题解)的更多相关文章

  1. Codeforces 1167c(ccpc wannafly camp day1) News Distribution 并查集模板

    题目: In some social network, there are nn users communicating with each other in mm groups of friends ...

  2. 2020 CCPC Wannafly Winter Camp Day1 C. 染色图

    2020 CCPC Wannafly Winter Camp Day1 C. 染色图 定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任 ...

  3. Wannafly 挑战赛 19 参考题解

    这一次的 Wannafly 挑战赛题目是我出的,除了第一题,剩余的题目好像对大部分算法竞赛者来说好像都不是特别友好,但是个人感觉题目质量还是过得去的,下面是题目链接以及题解. [题目链接] Wanna ...

  4. 2021 CCPC 威海站 VP记录(题解)

    2021 CCPC 威海站 VP记录(题解) 题目顺序为vp时开题顺序: A - Goodbye, Ziyin! 签到,连边数小于等于2的可以作为二叉树根,若有大于4的直接输出0. code: voi ...

  5. CCPC Wannafly Winter Camp Div2 部分题解

    Day 1, Div 2, Prob. B - 吃豆豆 题目大意 wls有一个\(n\)行\(m\)列的棋盘,对于第\(i\)行第\(j\)列的格子,每过\(T[i][j]\)秒会在上面出现一个糖果, ...

  6. CCPC、Petrozavodsk Camp、OpenCup 题解汇总

    省赛 \([\text{2021.11.30}]\) 2021 Jilin Collegiate Programming Contest 全部完成. \([\text{2021.12.25}]\) 2 ...

  7. 2020 CCPC Wannafly Winter Camp Day1-F-乘法

    题目传送门 sol:二分答案$K$,算大于$K$的乘积有多少个.关键在于怎么算这个个数,官方题解上给出的复杂度是$O(nlogn)$,那么计算个数的复杂度是$O(n)$的.感觉写着有点困难,自己写了一 ...

  8. 2020 CCPC Wannafly Winter Camp Day1 Div.1&amp F

    #include<bits/stdc++.h> #define forn(i, n) for (int i = 0; i < int(n); i++) #define fore(i, ...

  9. 2020 CCPC Wannafly Winter Camp Day1 - I. K小数查询(分块)

    题目链接:K小数查询 题意:给你一个长度为$n$序列$A$,有$m$个操作,操作分为两种: 输入$x,y,c$,表示对$i\in[x,y] $,令$A_{i}=min(A_{i},c)$ 输入$x,y ...

  10. 2020 CCPC Wannafly Winter Camp Day2-K-破忒头的匿名信

    题目传送门 sol:先通过AC自动机构建字典,用$dp[i]$表示长串前$i$位的最小代价,若有一个单词$s$是长串的前$i$项的后缀,那么可以用$dp[i - len(s)] + val(s)$转移 ...

随机推荐

  1. 【游记】NOIP2019复赛

    声明 我的游记是一个完整的体系,如果没有阅读过往届文章,阅读可能会受到障碍. ~~~上一篇游记的传送门~~~ 前言 (编辑中)

  2. Meta 用法汇总

    本文引自: http://blog.csdn.net/MR_LP/article/details/53607087 什么是 meta ? meta 是html语言head区的一个辅助性标签.也许你认为 ...

  3. SAP 修改MIRO变式

    转自:http://blog.vsharing.com/SAP100/A799545.html

  4. Codeforces 436D Pudding Monsters

    题意简述 开始有无限长的一段格子,有n个格子种有布丁怪兽,一开始连续的布丁怪兽算一个布丁怪兽. 每回合你可以将一个布丁怪兽向左或右移动,他会在碰到第一个布丁怪兽时停下,并与其合并. 有m个特殊格子,询 ...

  5. python变量前的单下划线(私有变量)和双下划线()

    1.单下划线 变量前的单下划线表示表面上私有 ,但是其实这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意 ...

  6. net core Webapi 总目录

    目录 博客目录 代码地址 博客目录 net core Webapi基础工程搭建(一)--开发工具及环境 net core Webapi基础工程搭建(二)--创建工程 net core Webapi基础 ...

  7. 纯数据结构Java实现(3/11)(链表)

    题外话: 篇幅停了一下,特意去看看其他人写的类似的内容:然后发现类似博主喜欢画图,喜欢讲解原理. (于是我就在想了,理解数据结构的确需要画图,但我的文章写给懂得人看,只配少量图即可,省事儿) 下面正题 ...

  8. C#/Java 动态生成电子发票

    电子发票是电商时代的产物,PDF发票是最常见的电子发票之一.在这篇文章中,我将给大家分享一个免费的动态生成PDF电子发票的C#方案,并在文章末尾附上Java解决方案. 典型的发票包含客户和供应商的名称 ...

  9. 纯数据结构Java实现(5/11)(Set&Map)

    纯数据结构Java实现(5/11)(Set&Map) Set 和 Map 都是抽象或者高级数据结构,至于底层是采用树还是散列则根据需要而定. 可以细想一下 TreeMap/HashMap, T ...

  10. [WPF自定义控件库] 关于ScrollViewr和滚动轮劫持(scroll-wheel-hijack)

    1. 什么是滚动轮劫持 这篇文章介绍一个很简单的继承自ScrollViewer的控件: public class ExtendedScrollViewer : ScrollViewer { prote ...