<?php
namespace Test; use Iterator;
use ArrayAccess;
use Exception; // 叶子结点或者连接结点的基类
class HuffmanBase
{
protected $weight; // 权重
protected $parent; public function setParent($parent)
{
$this->parent = $parent;
} public function getWeight()
{
return $this->weight;
} public function getParent()
{
return $this->parent;
}
} // 叶子结点
class HuffmanLeafNode extends HuffmanBase
{
protected $code; // 需要编码的字母 public function __construct($weight,$code,$parent = null)
{
if(!is_int($weight) || $weight <= 0 || is_null($code))
{
throw new Exception('Param is error!' .__FILE__.__LINE__);
}
$this->weight = abs($weight);
$this->code = $code;
$this->parent = $parent;
} public function getCode()
{
return $this->code;
}
} // 连接结点
class HuffmanJoinNode extends HuffmanBase
{
protected $lChild;
protected $rChild; public function __construct($weight = 0,$lChild = null,$rChild = null)
{
$this->weight = $weight;
$this->rChild = $rChild;
$this->lChild = $lChild;
} public function setWeight($leftWeight,$rightWeight)
{
if(!is_int($this->rChild) || !is_int($this->lChild))
{
throw new \Exception("Please initialize the left child or the right child!\n");
}
$this->weight = $leftWeight + $rightWeight;
} public function setChild($child,$leftOrRight)
{
if('left' == $leftOrRight)
{
$this->lChild = $child;
}
elseif('right' == $leftOrRight)
{
$this->rChild = $child;
}
else
{
throw new \Exception("Please input 'left' or 'right' to leftOrRight!\n");
}
} public function getChild($leftOrRight)
{
if('left' == $leftOrRight)
{
return $this->lChild;
}
elseif('right' == $leftOrRight)
{
return $this->rChild;
}
else
{
throw new \Exception("Please input 'left' or 'right' to leftOrRight!\n");
}
}
} // 哈夫曼树
class HuffmanTree implements \ArrayAccess,\Iterator
{
protected $nodes = array(); public function &getAllNodes()
{
return $this->nodes;
} public function offsetExists($offset)
{
// TODO: Implement offsetExists() method.
return isset($this->nodes[$offset]);
} public function offsetGet($offset)
{
// TODO: Implement offsetGet() method.
if(isset($this->nodes[$offset]))
{
return $this->nodes[$offset];
}
else
{
return null;
}
} public function offsetSet($offset,$value)
{
// TODO: Implement offsetSet() method.
if(!($value instanceof HuffmanBase))
{
throw new Exception('Param is error!' .__FILE__.__LINE__);
} if(is_null($offset))
{
$this->nodes[] = $value;
}
else
{
$this->nodes[$offset] = $value;
}
} public function offsetUnset($offset)
{
// TODO: Implement offsetUnset() method.
unset($this->nodes[$offset]);
} public function current()
{
// TODO: Implement current() method.
return current($this->nodes);
} public function key()
{
// TODO: Implement key() method.
return key($this->nodes);
} public function next()
{
// TODO: Implement next() method.
next($this->nodes);
} public function rewind()
{
// TODO: Implement rewind() method.
reset($this->nodes);
} public function valid()
{
// TODO: Implement valid() method.
return $this->offsetExists(key($this->nodes));
} public function length()
{
return count($this->nodes);
}
} // 从[$left,$right]区间选择parent=0并且weight最小的两个结点,其序号分别为$minNode1,$minNode2;
function selectTwoMinWeightNode(HuffmanTree &$huffmanTree,$left,$right,&$minNode1,&$minNode2)
{
$left = abs($left);
$right = abs($right); if(!is_int($left) || !is_int($right) || $left == $right)
{
throw new Exception('Param is error!' .__FILE__.__LINE__);
} if($left > $right)
{
$tmp = $left;
$left = $right;
$right = $tmp;
} $nodes = $huffmanTree->getAllNodes();
if(!isset($nodes[$right]))
{
throw new Exception('Over the array index!'.__FILE__.__LINE__);
} $tmp = array();
for($i = $left;$i <= $right; ++$i)
{
$huffmanNode = $huffmanTree[$i];
if(!is_null($huffmanNode->getParent()))
{
continue;
}
$tmp[$i] = $huffmanNode->getWeight();
} if(count($tmp) <= 1)
{
throw new Exception('Not enough number!'.__FILE__.__LINE__);
}
asort($tmp,SORT_NUMERIC);
$t = array_keys($tmp);
$minNode1 = $t[0];
$minNode2 = $t[1];
} // (编码 => 权重)
$nodes = array('A' => 3, 'B' => 4, 'C' => 7, 'D' => 10); $huffmanTree = new HuffmanTree(); // 初始化哈夫曼树的叶子结点
foreach($nodes as $code => $weight)
{
$huffmanNode = new HuffmanLeafNode($weight,$code);
$huffmanTree[] = $huffmanNode;
} $leafCount = $huffmanTree->length(); // 叶子结点的数量(大于1的值)
$nodeCount = 2 * $leafCount -1 ; // 哈夫曼树结点的数量 // 初始化哈夫曼树的非叶子结点(如果编译器未优化,--$i应该是比$i++效率高点的)
for($i = $nodeCount - $leafCount;$i >= 1; --$i)
{
$huffmanNode = new HuffmanJoinNode();
$huffmanTree[] = $huffmanNode;
} // 建立哈夫曼树
for($i = $leafCount;$i < $nodeCount; ++$i)
{
selectTwoMinWeightNode($huffmanTree,0,$i-1,$minNode1,$minNode2);
$huffmanNode1 = $huffmanTree[$minNode1];
$huffmanNode2 = $huffmanTree[$minNode2];
$huffmanNode1->setParent($i);
$huffmanNode2->setParent($i);
$huffmanTree[$i]->setChild($minNode1,'left');
$huffmanTree[$i]->setChild($minNode2,'right');
$huffmanTree[$i]->setWeight($huffmanNode1->getWeight(),$huffmanNode2->getWeight());
} // 从叶子到根的遍历,得到字母的编码
$huffmanCode = array();
for($i = 0;$i < $leafCount; ++$i)
{
$leafNode = $huffmanTree[$i];
$code = $leafNode->getCode();
$reverseCode = array();
for($c = $i,$pi = $leafNode->getParent();!is_null($pi);$pi = $huffmanTree[$pi]->getParent())
{
$huffmanNode = $huffmanTree[$pi];
if($huffmanNode->getChild('left') === $c)
{
$reverseCode[] = 0;
}
elseif($huffmanNode->getChild('right') === $c)
{
$reverseCode[] = 1;
}
else
{
throw new Exception('Something error happened!' .__FILE__.__LINE__);
}
$c = $pi;
}
$huffmanCode[$code] = array_reverse($reverseCode);
} foreach($huffmanCode as $key => $value)
{
$s = implode(',',$value);
echo $key. " : " .$s ."\n";
}

运行结果:

运行环境:

ArrayAccess  :(PHP 5 >= 5.0.0, PHP 7)

PHP 哈夫曼的实现的更多相关文章

  1. 哈夫曼(huffman)树和哈夫曼编码

    哈夫曼树 哈夫曼树也叫最优二叉树(哈夫曼树) 问题:什么是哈夫曼树? 例:将学生的百分制成绩转换为五分制成绩:≥90 分: A,80-89分: B,70-79分: C,60-69分: D,<60 ...

  2. (哈夫曼树)HuffmanTree的java实现

    参考自:http://blog.csdn.net/jdhanhua/article/details/6621026 哈夫曼树 哈夫曼树(霍夫曼树)又称为最优树. 1.路径和路径长度在一棵树中,从一个结 ...

  3. 数据结构之C语言实现哈夫曼树

    1.基本概念 a.路径和路径长度 若在一棵树中存在着一个结点序列 k1,k2,……,kj, 使得 ki是ki+1 的双亲(1<=i<j),则称此结点序列是从 k1 到 kj 的路径. 从 ...

  4. (转载)哈夫曼编码(Huffman)

    转载自:click here 1.哈夫曼编码的起源: 哈夫曼编码是 1952 年由 David A. Huffman 提出的一种无损数据压缩的编码算法.哈夫曼编码先统计出每种字母在字符串里出现的频率, ...

  5. C++哈夫曼树编码和译码的实现

    一.背景介绍: 给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的 ...

  6. 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  7. HDU2527 哈夫曼编码

    Safe Or Unsafe Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  8. *HDU1053 哈夫曼编码

    Entropy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  9. YTU 3027: 哈夫曼编码

    原文链接:https://www.dreamwings.cn/ytu3027/2899.html 3027: 哈夫曼编码 时间限制: 1 Sec  内存限制: 128 MB 提交: 2  解决: 2 ...

  10. 哈夫曼树---POJ3253

    http://poj.org/problem?id=3253 这就是 最典型的哈夫曼树的题型,我们就根据这道题学习一下哈夫曼树 这是最开始我们把21据下来之后我们据下8,然后再据下5得到34,可以看出 ...

随机推荐

  1. Java 教程 (Java 对象和类)

    Java 对象和类 Java作为一种面向对象语言.支持以下基本概念: 多态 继承 封装 抽象 类 对象 实例 方法 重载 本节我们重点研究对象和类的概念. 对象:对象是类的一个实例(对象不是找个女朋友 ...

  2. TestNG(三) 基本注解BeforeMethod和AfterMethod

    package com.course.testng; import org.testng.annotations.*; public class BasicAnnotation { @Test //最 ...

  3. Android 本地化适配:RTL(right-to-left) 适配清单

    本文首发自公众号:承香墨影(ID:cxmyDev),欢迎关注. 一. 序 越来越多的公司 App,都开始淘金海外,寻找更多的机会.然而海外市场千差万别,无论是市场还是用户的使用习惯,都有诸多的不同. ...

  4. String的优化 Stringbuffer和Stringbuilder

    string 上次说到string是最好衍生出来的一种字符类型,实现原理是由char[].我们知道数组一旦创建时不可更改的,所以每一次进行字符串的拼接都是在new一个新的字符串进行添加,这样的话对内存 ...

  5. [Linux] Telnet提示:Unable to connect to remote host: No route to host

    出错现象: [root@localhost ~]# telnet 192.168.1.128 Trying 192.168.1.128...telnet: connect to address 192 ...

  6. (5)Makefile详解

         Makefile是一个自动化的编译工具,关系到整个工程的编译规则,极大的提高了软件开发的效率.     (1)Makefile的编译规则 //Makefile 也可以写作 makefile1 ...

  7. Flask基础(12)-->请求上下文和应用上下文

    请求上下文和应用上下文 请求上下文:可以简单理解为客户端与服务器之间数据交互请求的容器 请求上下文对象有:request.Session request:封装了HTTP请求的内容,针对的是http的请 ...

  8. vue平行组件传值

    平行组件传值 通过平行组件传值可以实现任何情境下的传值,包括(父传子,子传父) 代码示例 <!DOCTYPE html> <html lang="en"> ...

  9. springcloud --- spring cloud sleuth和zipkin日志管理(spring boot 2.18)

    前言 在spring cloud分布式架构中,系统被拆分成了许多个服务单元,业务复杂性提高.如果出现了异常情况,很难定位到错误位置,所以需要实现分布式链路追踪,跟进一个请求有哪些服务参与,参与的顺序如 ...

  10. Thinkphp5.0第四篇

    删除数据 当前模型删除 $user=UserModel::get(1); if($user->delete()){return '删除成功';} else{return '删除失败';} 根据主 ...