Spark2.x(五十五):在spark structured streaming下sink file(parquet,csv等),正常运行一段时间后:清理掉checkpoint,重新启动app,无法sink记录(file)到hdfs。
场景:
在spark structured streaming读取kafka上的topic,然后将统计结果写入到hdfs,hdfs保存目录按照month,day,hour进行分区:
1)程序放到spark上使用yarn开始运行(yarn-client或yarn-cluster),可以正常sink结果到目录下(分配了executor,executor上有task分配,hdfs有结果输出);
2)程序出现问题,然后修改bug,将checkpoint删除了(为了重新消费kafka的topic上的数据),hdfs sink hdfs结果目录不清理,此时问题出现了:程序启动起来后,一直在触发批次,通过查看日志“Monitoring Streaming Queries-》Metrics”信息发现topic的offset随着批次触发增加偏移位置也在增加,并成功commit,记录offset到checkpoint下。但是一直未DAGScheduler划分stage、提交stage、提交任务。
3)短时间测试发现:executor在任务提交成功后,成功分配了executor,但是executor一直未分配任何任务;
4)长时间测试发现:2019-07-25 00:00:00开始提交任务,在2019-07-25 03:06:00开始执行代码解析,DAGScheduler划分stage、提交stage、提交任务。
程序如下:
//输出2个文件
Dataset<Row> dataset = this.sparkSession.readStream().format("kafka")
.options(this.getSparkKafkaCommonOptions(sparkSession)) //读取spark-testapp.conf,自定义配置信息。
.option("kafka.bootstrap.servers", "192.168.1.1:9092,192.168.1.2:9092")
.option("subscribe", "myTopic1,myTopic2")
.option("startingOffsets", "earliest")
.load(); String mdtTempView = "mdtbasetemp";
ExpressionEncoder<Row> Rowencoder = this.getSchemaEncoder(new Schema.Parser().parse(baseschema.getValue()));
Dataset<Row> parseVal = dataset.select("value").as(Encoders.BINARY())
.map(new MapFunction<Row>(){
....
}, Rowencoder)
.createOrReplaceGlobalTempView(mdtTempView); Dataset<Row> queryResult = this.sparkSession.sql("select 。。。 from global_temp." + mdtTempView + " where start_time<>\"\""); /*输出路径*/
String outputPath = "/user/dx/streaming/data/testapp";
String checkpointLocation= "/user/dx/streaming/checkpoint/testapp"; // Sink方法1:
StreamingQuery query = queryResult.writeStream().format("parquet")
.option("path", outputPath)
.option("checkpointLocation", checkpointLocation)
.partitionBy("month", "day", "hour")
.outputMode(OutputMode.Append())
.trigger(Trigger.ProcessingTime(1, TimeUnit.MINUTES))
.start(); try {
query.awaitTermination();
} catch (StreamingQueryException e) {
e.printStackTrace();
}
长时间执行日志:
程序在00:00左右开始提交,分配executor,然后开始读取kafka数据,开始多次触发批次,在03:06开始生成自行代码,DAGScheduler划分stage、提交stage、提交task到executor,回落正常情况。
......
9/07/25 03:05:00 INFO internals.Fetcher: [Consumer clientId=consumer-1, groupId=spark-kafka-source-032985c5-b382-41ab-a115-ec44d9ba26bc-462898594-driver-0] Resetting offset for partition myTopic-97 to offset 147327.
19/07/25 03:05:00 INFO internals.Fetcher: [Consumer clientId=consumer-1, groupId=spark-kafka-source-032985c5-b382-41ab-a115-ec44d9ba26bc-462898594-driver-0] Resetting offset for partition myTopic-101 to offset 147329.
19/07/25 03:05:00 INFO internals.Fetcher: [Consumer clientId=consumer-1, groupId=spark-kafka-source-032985c5-b382-41ab-a115-ec44d9ba26bc-462898594-driver-0] Resetting offset for partition myTopic-37 to offset 147327.
19/07/25 03:05:00 INFO streaming.CheckpointFileManager: Writing atomically to hdfs://hadoop7:8020/user/dx/streaming/checkpoint/testapp/offsets/202 using temp file hdfs://hadoop7:8020/user/dx/streaming/checkpoint/testapp/offsets/.202.22f580ca-bfb3-422d-9e45-d83186088b42.tmp
19/07/25 03:05:00 INFO streaming.CheckpointFileManager: Renamed temp file hdfs://hadoop7:8020/user/dx/streaming/checkpoint/testapp/offsets/.202.22f580ca-bfb3-422d-9e45-d83186088b42.tmp to hdfs://hadoop7:8020/user/dx/streaming/checkpoint/testapp/offsets/202
19/07/25 03:05:00 INFO streaming.MicroBatchExecution: Committed offsets for batch 202. Metadata OffsetSeqMetadata(0,1563995100011,Map(spark.sql.streaming.stateStore.providerClass -> org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider, spark.sql.streaming.flatMapGroupsWithState.stateFormatVersion -> 2, spark.sql.streaming.multipleWatermarkPolicy -> min, spark.sql.streaming.aggregation.stateFormatVersion -> 2, spark.sql.shuffle.partitions -> 100))
19/07/25 03:05:00 INFO kafka010.KafkaMicroBatchReader: Partitions added: Map()
19/07/25 03:05:00 INFO streaming.FileStreamSink: Skipping already committed batch 202
19/07/25 03:05:00 INFO streaming.CheckpointFileManager: Renamed temp file hdfs://hadoop7:8020/user/dx/streaming/checkpoint/testapp/commits/.202.0cb8f1ad-7b00-46fd-b65f-7bf055eda4ae.tmp to hdfs://hadoop7:8020/user/dx/streaming/checkpoint/testapp/commits/202
Trigger load count accumulator value: 192
19/07/25 03:05:00 INFO streaming.MicroBatchExecution:
#这里实际上两个topic,我只摘取了一个topic的metrics
Streaming query made progress: {
"id" : "c5537e0c-979d-4575-b4d2-1f8a746d2673",
"runId" : "d7c5a8f6-e876-45c4-8a02-984045e031ec",
"name" : null,
"timestamp" : "2019-07-24T19:05:00.000Z",
"batchId" : 202,
"numInputRows" : 0,
"inputRowsPerSecond" : 0.0,
"processedRowsPerSecond" : 0.0,
"durationMs" : {
"addBatch" : 52,
"getBatch" : 1,
"getEndOffset" : 1,
"queryPlanning" : 319,
"setOffsetRange" : 10,
"triggerExecution" : 486,
"walCommit" : 67
},
"stateOperators" : [ ],
"sources" : [ {
"description" : "KafkaV2[Subscribe[myTopic-2]]",
"startOffset" : {
"myTopic-2" : {
......
"6" : 146978,
"0" : 146978
}
},
"endOffset" : {
"myTopic-2" : {
......
"6" : 147329,
"0" : 147329
}
},
"numInputRows" : 0,
"inputRowsPerSecond" : 0.0,
"processedRowsPerSecond" : 0.0
} ],
"sink" : {
"description" : "FileSink[/user/dx/streaming/data/testapp]"
}
}
....
19/07/25 03:06:00 INFO internals.Fetcher: [Consumer clientId=consumer-1, groupId=spark-kafka-source-032985c5-b382-41ab-a115-ec44d9ba26bc-462898594-driver-0] Resetting offset for partition myTopic-2 to offset 147659.
19/07/25 03:06:00 INFO internals.Fetcher: [Consumer clientId=consumer-1, groupId=spark-kafka-source-032985c5-b382-41ab-a115-ec44d9ba26bc-462898594-driver-0] Resetting offset for partition myTopic-66 to offset 147662.
19/07/25 03:06:00 INFO streaming.CheckpointFileManager: Writing atomically to hdfs://hadoop7:8020/user/dx/streaming/checkpoint/testapp/offsets/203 using temp file hdfs://hadoop7:8020/user/dx/streaming/checkpoint/testapp/offsets/.203.72235ff6-aa6d-4e8f-b924-888335fe2035.tmp
19/07/25 03:06:00 INFO streaming.CheckpointFileManager: Renamed temp file hdfs://hadoop7:8020/user/dx/streaming/checkpoint/testapp/offsets/.203.72235ff6-aa6d-4e8f-b924-888335fe2035.tmp to hdfs://hadoop7:8020/user/dx/streaming/checkpoint/testapp/offsets/203
19/07/25 03:06:00 INFO streaming.MicroBatchExecution: Committed offsets for batch 203. Metadata OffsetSeqMetadata(0,1563995160011,Map(spark.sql.streaming.stateStore.providerClass -> org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider, spark.sql.streaming.flatMapGroupsWithState.stateFormatVersion -> 2, spark.sql.streaming.multipleWatermarkPolicy -> min, spark.sql.streaming.aggregation.stateFormatVersion -> 2, spark.sql.shuffle.partitions -> 100))
19/07/25 03:06:00 INFO kafka010.KafkaMicroBatchReader: Partitions added: Map()
19/07/25 03:06:00 INFO parquet.ParquetFileFormat: Using default output committer for Parquet: parquet.hadoop.ParquetOutputCommitter
19/07/25 03:06:01 INFO codegen.CodeGenerator: Code generated in 316.896471 ms
19/07/25 03:06:01 INFO spark.SparkContext: Starting job: start at MdtStreamDriver.java:184
19/07/25 03:06:01 INFO scheduler.DAGScheduler: Got job 0 (start at MdtStreamDriver.java:184) with 128 output partitions
19/07/25 03:06:01 INFO scheduler.DAGScheduler: Final stage: ResultStage 0 (start at MdtStreamDriver.java:184)
19/07/25 03:06:01 INFO scheduler.DAGScheduler: Parents of final stage: List()
19/07/25 03:06:01 INFO scheduler.DAGScheduler: Missing parents: List()
19/07/25 03:06:01 INFO scheduler.DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[7] at start at MdtStreamDriver.java:184), which has no missing parents
19/07/25 03:06:02 INFO memory.MemoryStore: Block broadcast_4 stored as values in memory (estimated size 255.5 KB, free 5.6 GB)
19/07/25 03:06:02 INFO memory.MemoryStore: Block broadcast_4_piece0 stored as bytes in memory (estimated size 84.7 KB, free 5.6 GB)
19/07/25 03:06:02 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on hadoop7:35113 (size: 84.7 KB, free: 6.2 GB)
19/07/25 03:06:02 INFO spark.SparkContext: Created broadcast 4 from broadcast at DAGScheduler.scala:1161
19/07/25 03:06:02 INFO scheduler.DAGScheduler: Submitting 128 missing tasks from ResultStage 0 (MapPartitionsRDD[7] at start at MdtStreamDriver.java:184) (first 15 tasks are for partitions Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14))
19/07/25 03:06:02 INFO cluster.YarnScheduler: Adding task set 0.0 with 128 tasks
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 11.0 in stage 0.0 (TID 0, hadoop6, executor 6, partition 11, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 6.0 in stage 0.0 (TID 1, hadoop6, executor 2, partition 6, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 21.0 in stage 0.0 (TID 2, hadoop37, executor 9, partition 21, PROCESS_LOCAL, 8822 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 2.0 in stage 0.0 (TID 3, hadoop37, executor 10, partition 2, PROCESS_LOCAL, 8823 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 0.0 (TID 4, hadoop6, executor 1, partition 0, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 7.0 in stage 0.0 (TID 5, hadoop6, executor 3, partition 7, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 4.0 in stage 0.0 (TID 6, hadoop6, executor 4, partition 4, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 1.0 in stage 0.0 (TID 7, hadoop37, executor 8, partition 1, PROCESS_LOCAL, 8822 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 3.0 in stage 0.0 (TID 8, hadoop37, executor 7, partition 3, PROCESS_LOCAL, 8822 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 5.0 in stage 0.0 (TID 9, hadoop6, executor 5, partition 5, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 41.0 in stage 0.0 (TID 10, hadoop6, executor 6, partition 41, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 31.0 in stage 0.0 (TID 11, hadoop6, executor 2, partition 31, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 27.0 in stage 0.0 (TID 12, hadoop37, executor 9, partition 27, PROCESS_LOCAL, 8822 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 12.0 in stage 0.0 (TID 13, hadoop37, executor 10, partition 12, PROCESS_LOCAL, 8823 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 9.0 in stage 0.0 (TID 14, hadoop6, executor 1, partition 9, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 19.0 in stage 0.0 (TID 15, hadoop6, executor 3, partition 19, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 23.0 in stage 0.0 (TID 16, hadoop6, executor 4, partition 23, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 8.0 in stage 0.0 (TID 17, hadoop37, executor 8, partition 8, PROCESS_LOCAL, 8822 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 20.0 in stage 0.0 (TID 18, hadoop37, executor 7, partition 20, PROCESS_LOCAL, 8822 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 10.0 in stage 0.0 (TID 19, hadoop6, executor 5, partition 10, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 42.0 in stage 0.0 (TID 20, hadoop6, executor 6, partition 42, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 39.0 in stage 0.0 (TID 21, hadoop6, executor 2, partition 39, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 53.0 in stage 0.0 (TID 22, hadoop37, executor 9, partition 53, PROCESS_LOCAL, 8822 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 29.0 in stage 0.0 (TID 23, hadoop37, executor 10, partition 29, PROCESS_LOCAL, 8823 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 15.0 in stage 0.0 (TID 24, hadoop6, executor 1, partition 15, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 26.0 in stage 0.0 (TID 25, hadoop6, executor 3, partition 26, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 32.0 in stage 0.0 (TID 26, hadoop6, executor 4, partition 32, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 13.0 in stage 0.0 (TID 27, hadoop37, executor 8, partition 13, PROCESS_LOCAL, 8822 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 22.0 in stage 0.0 (TID 28, hadoop37, executor 7, partition 22, PROCESS_LOCAL, 8822 bytes)
19/07/25 03:06:02 INFO scheduler.TaskSetManager: Starting task 16.0 in stage 0.0 (TID 29, hadoop6, executor 5, partition 16, PROCESS_LOCAL, 8821 bytes)
19/07/25 03:06:02 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on hadoop37:49766 (size: 84.7 KB, free: 4.6 GB)
19/07/25 03:06:02 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on hadoop37:59401 (size: 84.7 KB, free: 4.6 GB)
19/07/25 03:06:02 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on hadoop37:39051 (size: 84.7 KB, free: 4.6 GB)
19/07/25 03:06:02 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on hadoop37:53105 (size: 84.7 KB, free: 4.6 GB)
19/07/25 03:06:02 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on hadoop6:60796 (size: 84.7 KB, free: 4.6 GB)
19/07/25 03:06:02 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on hadoop6:40022 (size: 84.7 KB, free: 4.6 GB)
19/07/25 03:06:02 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on hadoop6:37348 (size: 84.7 KB, free: 4.6 GB)
19/07/25 03:06:02 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on hadoop6:40556 (size: 84.7 KB, free: 4.6 GB)
19/07/25 03:06:02 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on hadoop6:58914 (size: 84.7 KB, free: 4.6 GB)
19/07/25 03:06:02 INFO storage.BlockManagerInfo: Added broadcast_4_piece0 in memory on hadoop6:38491 (size: 84.7 KB, free: 4.6 GB)
19/07/25 03:06:07 INFO storage.BlockManagerInfo: Added broadcast_1_piece0 in memory on hadoop37:49766 (size: 1527.0 B, free: 4.6 GB)
19/07/25 03:06:07 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on hadoop37:49766 (size: 1527.0 B, free: 4.6 GB)
19/07/25 03:06:07 INFO scheduler.TaskSetManager: Starting task 33.0 in stage 0.0 (TID 30, hadoop37, executor 7, partition 33, PROCESS_LOCAL, 8822 bytes)
19/07/25 03:06:07 INFO scheduler.TaskSetManager: Starting task 40.0 in stage 0.0 (TID 31, hadoop37, executor 7, partition 40, PROCESS_LOCAL, 8822 bytes)
19/07/25 03:06:07 INFO scheduler.TaskSetManager: Starting task 49.0 in stage 0.0 (TID 32, hadoop37, executor 7, partition 49, PROCESS_LOCAL, 8822 bytes)
其中代码中一个比较重要的日志:
19/07/25 03:05:00 INFO streaming.FileStreamSink: Skipping already committed batch 202
上边代码包含两个批次的触发:
触发时刻1):“19/07/25 03:05:00”成功分配task之前的空触发(未分配task的最后一次触发,这是一次错误的出发批次。注意的:实际上每次错误触发批次中都包含上边红色日志“INFO streaming.FileStreamSink: Skipping already committed batch $batchId”
触发时刻2):“19/07/25 03:06:00”这批触发可以从上边日志清晰看到,生成了执行代码,DAGScheduler成功划分了stage、提交stage、提交task、executor中开始运行task等信息。这是一次正常的触发批次。
问题解决:
方案1)(采用foreachBatch方式来sink file替换):
经过测试发现如果把最后sink的format修改为console方式,每次都可以正常触发,第一次触发就分配stage,给executor分配了task;如果把sink file的format设置为csv、parquet就不能正常触发,猜测是触发方式的问题:修改触发方式为foreachBatch。
// Sink方法2:
/**.repartition(1) 可以考虑加上,能避免小文件,repartition越小,小文件相对会少,但是性能会差点。*/
StreamingQuery query = queryResult.writeStream()
.option("checkpointLocation", checkpointLocation)
.foreachBatch(new VoidFunction2<Dataset<Row>,Long>(){
private static final long serialVersionUID = 2689158908273637554L; @Override
public void call(Dataset<Row> v1, Long v2) throws Exception {
v1.write().partitionBy("month", "day", "hour").mode(SaveMode.Append).save(outputPath);
}})
.outputMode(OutputMode.Append())
.trigger(Trigger.ProcessingTime(1, TimeUnit.MINUTES))
.start();
经过多次测试发现,问题确实解决了。但是上边那种sink file(parquet/csv)方式也是官方推出的,不应该有bug、
方案2)(未验证):
上边日志中“INFO streaming.FileStreamSink: Skipping already committed batch $batchId”这个信息很重要,这个日志每次未正常sink数据到hdfs的触发打印日志中都有打印,这个日志是org/apache/spark/sql/execution/streaming/FileStreamSink.scala的108行代码(spark2.4)中出现输出的。
/**
* A sink that writes out results to parquet files. Each batch is written out to a unique
* directory. After all of the files in a batch have been successfully written, the list of
* file paths is appended to the log atomically. In the case of partial failures, some duplicate
* data may be present in the target directory, but only one copy of each file will be present
* in the log.
*/
class FileStreamSink(
sparkSession: SparkSession,
path: String,
fileFormat: FileFormat,
partitionColumnNames: Seq[String],
options: Map[String, String]) extends Sink with Logging { private val basePath = new Path(path)
private val logPath = new Path(basePath, FileStreamSink.metadataDir)
private val fileLog =
new FileStreamSinkLog(FileStreamSinkLog.VERSION, sparkSession, logPath.toUri.toString)
private val hadoopConf = sparkSession.sessionState.newHadoopConf() private def basicWriteJobStatsTracker: BasicWriteJobStatsTracker = {
val serializableHadoopConf = new SerializableConfiguration(hadoopConf)
new BasicWriteJobStatsTracker(serializableHadoopConf, BasicWriteJobStatsTracker.metrics)
} override def addBatch(batchId: Long, data: DataFrame): Unit = {
if (batchId <= fileLog.getLatest().map(_._1).getOrElse(-1L)) {
logInfo(s"Skipping already committed batch $batchId")
} else {
val committer = FileCommitProtocol.instantiate(
className = sparkSession.sessionState.conf.streamingFileCommitProtocolClass,
jobId = batchId.toString,
outputPath = path) committer match {
case manifestCommitter: ManifestFileCommitProtocol =>
manifestCommitter.setupManifestOptions(fileLog, batchId)
case _ => // Do nothing
} // Get the actual partition columns as attributes after matching them by name with
// the given columns names.
val partitionColumns: Seq[Attribute] = partitionColumnNames.map { col =>
val nameEquality = data.sparkSession.sessionState.conf.resolver
data.logicalPlan.output.find(f => nameEquality(f.name, col)).getOrElse {
throw new RuntimeException(s"Partition column $col not found in schema ${data.schema}")
}
}
val qe = data.queryExecution FileFormatWriter.write(
sparkSession = sparkSession,
plan = qe.executedPlan,
fileFormat = fileFormat,
committer = committer,
outputSpec = FileFormatWriter.OutputSpec(path, Map.empty, qe.analyzed.output),
hadoopConf = hadoopConf,
partitionColumns = partitionColumns,
bucketSpec = None,
statsTrackers = Seq(basicWriteJobStatsTracker),
options = options)
}
} override def toString: String = s"FileSink[$path]"
}
从上边代码可以确定代码中做了特殊处理:当前batchId小于当日志中记录的最新的batchId时,将不触发写入信息到hdfs中,只是打印了这个“Skipping already committed batch $batchId”
上边日志是保存到sink file的path下的,猜测是保存到了path/_spark_metadata下了。

如果重新执行时,删除了checkpoint,应该也必须删除sink file的保存hdfs目录下的日志,日志中保存batchId信息,删除batchId日志信息才能从头开始触发,按照代码分析应该是这么一个原因,但是还未验证。
Spark2.x(五十五):在spark structured streaming下sink file(parquet,csv等),正常运行一段时间后:清理掉checkpoint,重新启动app,无法sink记录(file)到hdfs。的更多相关文章
- Spark2.2(三十八):Spark Structured Streaming2.4之前版本使用agg和dropduplication消耗内存比较多的问题(Memory issue with spark structured streaming)调研
在spark中<Memory usage of state in Spark Structured Streaming>讲解Spark内存分配情况,以及提到了HDFSBackedState ...
- Spark2.x(五十四):在spark structured streaming下测试ds.selectExpr(),当返回列多时出现卡死问题。
业务需求,有一部分动态字段,需要在程序中动态加载并解析表达式: 实现方案1):在MapFunction.MapPartitionFunction中使用FelEngine进行解析: FelEngine ...
- Spark2.3(三十五)Spark Structured Streaming源代码剖析(从CSDN和Github中看到别人分析的源代码的文章值得收藏)
从CSDN中读取到关于spark structured streaming源代码分析不错的几篇文章 spark源码分析--事件总线LiveListenerBus spark事件总线的核心是LiveLi ...
- Spark2.3(四十二):Spark Streaming和Spark Structured Streaming更新broadcast总结(二)
本次此时是在SPARK2,3 structured streaming下测试,不过这种方案,在spark2.2 structured streaming下应该也可行(请自行测试).以下是我测试结果: ...
- Spark2.3(三十四):Spark Structured Streaming之withWaterMark和windows窗口是否可以实现最近一小时统计
WaterMark除了可以限定来迟数据范围,是否可以实现最近一小时统计? WaterMark目的用来限定参数计算数据的范围:比如当前计算数据内max timestamp是12::00,waterMar ...
- Spark2.2(三十三):Spark Streaming和Spark Structured Streaming更新broadcast总结(一)
背景: 需要在spark2.2.0更新broadcast中的内容,网上也搜索了不少文章,都在讲解spark streaming中如何更新,但没有spark structured streaming更新 ...
- 第三百五十五天 how can I 坚持
快一年了,三百五十五天了,等写个程序算算时间,看看日期和天数能不能对的上,哈哈. 计划还是未制定,天气预报还是没有写完,立马行动,发完这个博客,立马行动. 计划:设计模式1个月,三大框架3个月,计算机 ...
- 第三百五十五节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy信号详解
第三百五十五节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy信号详解 信号一般使用信号分发器dispatcher.connect(),来设置信号,和信号触发函数,当捕获到信号时执行 ...
- “全栈2019”Java第五十五章:方法的静态绑定与动态绑定
难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...
随机推荐
- SocksCap代理
所有Windows应用都可以使用Socks代理上网,即使不支持Socks代理的应用也可以用Socks代理上网 配置代理 点击"添加",代理类型可以修改, 支持代理测试 运行程序 点 ...
- printk打印级别
默认级别 # cat /proc/sys/kernel/printk 4 4 1 7 分别是:控制台日志级别.默认的消息日志级别.最低的控制台日志级别和默认的控制台日志级别 举例 # echo 0 & ...
- java-java技术链接
java基础知识总结大全:https://blog.csdn.net/hao19980724/article/details/83792516 Java核心技术梳理-集合:https://mp.wei ...
- 了解 npm install -S -D 的区别,看这篇就完事了
一.npm install -S -D 的区别 npm install module_name -S 即 npm install module_name --save 写入dependencies n ...
- golang面向对象实现
面向对象编程三大特点:封装.继承.多态. 1. 构造函数 Go不支持构造器.如果某类型的零值不可用,需要提供NewT(parameters)函数,用来初始化T类型的变量.按照Go的惯例,应该把创建T类 ...
- k8s node节点部署(v1.13.10)
系统环境: node节点 操作系统: CentOS-7-x86_64-DVD-1908.iso node节点 IP地址: 192.168.1.204 node节点 hostname(主机名, 请和保持 ...
- java中的偏序关系
从半个多月前接到阿里的面试电话,被多线程问题难住,到今天终于读完了<Java Concurrency In Practice>.想总结一下,又发现自己没有能力将一本书的内容都概括下来.还是 ...
- curl请求https资源的时候出现400
在nginx上配置了一个新的域名, 习惯性地用curl请求看看有没有配置错误 因为是https的, 所以 $curl 'https://test.test.com/' -x 127.0.0.1:443 ...
- PCB板信号完整性分析的操作步骤及设置方法
AD16的主要功能是画电路原理图和根据电路原理图设计PCB板.为了使设计的电路.画完的电路原理图,从电路原理上不存在错误,从电路逻辑上不存在混乱,AD16专门开发了电路原理图的仿真程序.这样可以把设计 ...
- Python入门篇-生成器函数
Python入门篇-生成器函数 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.生成器概述 1>.生成器generator 生成器指的是生成器对象,可以由生成器表达式得到, ...