storm并行
Storm并行度
public class WordCountTopology { private static final String SENTENCE_SPOUT_ID = "sentence-spout";
private static final String SPLIT_BOLT_ID = "split-bolt";
private static final String COUNT_BOLT_ID = "count-bolt";
private static final String REPORT_BOLT_ID = "report-bolt";
private static final String TOPOLOGY_NAME = "word-count-topology"; public static void main(String[] args) throws
Exception {
SentenceSpout spout = new SentenceSpout();
SplitSentenceBolt splitBolt = new
SplitSentenceBolt();
WordCountBolt countBolt = new WordCountBolt();
ReportBolt reportBolt = new ReportBolt(); TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(SENTENCE_SPOUT_ID, spout);
// SentenceSpout --> SplitSentenceBolt
builder.setBolt(SPLIT_BOLT_ID, splitBolt).shuffleGrouping(SENTENCE_SPOUT_ID);
// SplitSentenceBolt --> WordCountBolt
builder.setBolt(COUNT_BOLT_ID, countBolt).fieldsGrouping(
SPLIT_BOLT_ID, new Fields("word"));
// WordCountBolt --> ReportBolt
builder.setBolt(REPORT_BOLT_ID, reportBolt).globalGrouping(COUNT_BOLT_ID);
Config config = new Config();
LocalCluster cluster = new LocalCluster();
cluster.submitTopology(TOPOLOGY_NAME, config,
builder.createTopology());
Utils.sleep(10000);
cluster.killTopology(TOPOLOGY_NAME);
cluster.shutdown();
}
}
流程:(包括一个spout和三个bolt)
sentence-spout 生成句子
split-bolt 切分句子传入单词
count-bolt 单词统计
report-bolt 结果输出
1、WordCountTopology并行性

2、在拓扑中增加worker
Config config = new Config();
config.setNumWorkers(2);
3、配置executor数和task数
builder.setSpout(SENTENCE_SPOUT_ID, spout, 2);

builder.setBolt(SPLIT_BOLT_ID, splitBolt, 2).setNumTasks(4)
.shuffleGrouping(SENTENCE_SPOUT_ID);
builder.setBolt(COUNT_BOLT_ID, countBolt, 4)
.fieldsGrouping(SPLIT_BOLT_ID, newFields("word"));

--- FINAL COUNTS ---
a : 2726
ate : 2722
beverages : 2723
cold : 2723
cow : 2726
dog : 5445
don't : 5444
fleas : 5451
has : 2723
have : 2722
homework : 2722
i : 8175
like : 5449
man : 2722
my : 5445
the : 2727
think : 2722
--------------
原来的结果:
--- FINAL COUNTS ---
a : 1426
ate : 1426
beverages : 1426
cold : 1426
cow : 1426
dog : 2852
don't : 2851
fleas : 2851
has : 1426
have : 1426
homework : 1426
i : 4276
like : 2851
man : 1426
my : 2852
the : 1426
think : 1425
--------------
Storm流分组
public interface CustomStreamGrouping extends Serializable {
void prepare(WorkerTopologyContext context, GlobalStreamId stream, List<Integer> targetTasks);
List<Integer> chooseTasks(int taskId, List<Object> values);
}
public void nextTuple() {
if(index < sentences.length){
this.collector.emit(new Values(sentences[index]));
index++;
}
Utils.waitForMillis(1);
}
--- FINAL COUNTS ---
a : 2
ate : 2
beverages : 2
cold : 2
cow : 2
dog : 4
don't : 4
fleas : 4
has : 2
have : 2
homework : 2
i : 6
like : 4
man : 2
my : 4
the : 2
think : 2
--------------
原来:
builder.setBolt(COUNT_BOLT_ID, countBolt, 4)
.fieldsGrouping(SPLIT_BOLT_ID, newFields("word"))
改成:
builder.setBolt(COUNT_BOLT_ID, countBolt, 4)
.shuffleGrouping(SPLIT_BOLT_ID);
--- FINAL COUNTS ---
a : 1
ate : 2
beverages : 1
cold : 1
cow : 1
dog : 2
don't : 2
fleas : 1
has : 1
have : 1
homework : 1
i : 3
like : 1
man : 1
my : 1
the : 1
think : 1
--------------
我们计算不正确了,因为CountBolt参数是有状态:它保留一个计数为每个收到的单词的。在这种情况下,我们计算的准确性取决于当组件被并行化基于元组的内容分组的能力。引入的错误我们将只显示如果CountBolt参数大于1的并行性。这强调了测试拓扑与各种并行配置的重要性。
1、Tip
2、消息处理保证
3、Spout的可靠性

public interface ISpout extends Serializable {
void open(Map conf, TopologyContext context, SpoutOutputCollector collector); void close();
void nextTuple();
void ack(Object msgId);
void fail(Object msgId);
}
collector.emit(new Values("value1", "value2") ,msgId);
4、bolt可靠性
collector.emit(tuple, new Values(word));
collector.emit(new Values(word));
this.collector.ack(tuple);
this.collector.fail(tuple)
5、可靠的word count(修改后的程序)
public class SentenceSpout extends BaseRichSpout { private ConcurrentHashMap<UUID, Values> pending; private SpoutOutputCollector collector; private String[] sentences = {
"my dog has fleas",
"i like cold beverages",
"the dog ate my homework",
"don't have a cow man",
"i don't think i like fleas"
};
private int index = 0; public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("sentence"));
}
public void open(Map config, TopologyContext context,
SpoutOutputCollector collector) {
this.collector = collector;
this.pending = new ConcurrentHashMap<UUID, Values>();
} public void nextTuple() {
Values values = new Values(sentences[index]);
UUID msgId = UUID.randomUUID();
this.pending.put(msgId, values);
this.collector.emit(values, msgId);
index++;
if (index >= sentences.length) {
index = 0;
}
Utils.sleep(1);
}
public void ack(Object msgId) {
this.pending.remove(msgId);
} public void fail(Object msgId) {
this.collector.emit(this.pending.get(msgId), msgId);
}
}
public class ReliableSplitSentenceBolt extends BaseRichBolt {
private OutputCollector collector;
public void prepare(Map config, TopologyContext
context, OutputCollector collector) {
this.collector = collector;
} public void execute(Tuple tuple) {
String sentence = tuple.getStringByField("sentence");
String[] words = sentence.split(" ");
for(String word : words){
this.collector.emit(tuple, new Values(word));
}
this.collector.ack(tuple);
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
}
storm并行的更多相关文章
- storm的并发
1 storm并行的基本概念 storm集群中的一个机器可以运行一个或者多个worker,对应于一个或者多个topologies. 1个worker进程运行1个或多个excutor线程.每个worke ...
- 【Storm篇】--Storm并发机制
一.前述 为了提高Storm的并行能力,通常需要设置并行. 二.具体原理 1. Storm并行分为几个方面: Worker – 进程一个Topology拓扑会包含一个或多个Worker(每个Worke ...
- 【原】理解Storm拓扑的并行
Storm入门教程 1. Storm基础 Storm Storm主要特点 Storm基本概念 Storm调度器 Storm配置 Guaranteeing Message Processing(消息处理 ...
- Storm集群中执行的各种组件及其并行
一.Storm中执行的组件 我们知道,Storm的强大之处就是能够非常easy地在集群中横向拓展它的计算能力,它会把整个运算过程切割成多个独立的tasks在集群中进行并行计算.在Storm中 ...
- 大数据处理框架之Strom: Storm拓扑的并行机制和通信机制
一.并行机制 Storm的并行度 ,通过提高并行度可以提高storm程序的计算能力. 1.组件关系:Supervisor node物理节点,可以运行1到多个worker,不能超过supervisor. ...
- Storm介绍(一)
作者:Jack47 PS:如果喜欢我写的文章,欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 内容简介 本文是Storm系列之一,介绍了Storm的起源,Storm ...
- Storm构建分布式实时处理应用初探
最近利用闲暇时间,又重新研读了一下Storm.认真对比了一下Hadoop,前者更擅长的是,实时流式数据处理,后者更擅长的是基于HDFS,通过MapReduce方式的离线数据分析计算.对于Hadoop, ...
- Storm介绍及与Spark Streaming对比
Storm介绍 Storm是由Twitter开源的分布式.高容错的实时处理系统,它的出现令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求.Storm常用于在实时分析.在线机器学 ...
- storm 入门原理介绍
1.hadoop有master与slave,Storm与之对应的节点是什么? 2.Storm控制节点上面运行一个后台程序被称之为什么? 3.Supervisor的作用是什么? 4.Topology与W ...
随机推荐
- Asp.net MVC企业级开发(02)---Log4net
Log4Net 是用来记录日志的,可以将程序运行过程中的信息输出到一些地方(文件.数据库.EventLog等).日志就是程序的“黑匣子”,可以通过日志查看系统的运行过程,从而发现系统的问题. 日志的作 ...
- 何为KVM克隆和快照
KVM的克隆.快照都是老生常谈的问题,资料也非常多,这里只是针对个人实验的记录,方便以后查阅. 虚拟机克隆 虚拟机的克隆操作是再频繁不过了,安装好第一台虚拟机后就可以进行基础设置,已此虚拟机为模板,以 ...
- Linux操作:使用grep排除搜索的目录
使用grep时,当一个目录下有一个包含很多文件的目录,但也不想搜索它,怎么办? 使用 --exclude-dir 选项. 单个目录示例: grep -rni 'http' --exclude-dir= ...
- thinkphp路由配置route.php
路由设置配置 打开route.php 引入Route控制器类(use think\Route;) 设置路由--> Route::rule('路由表达式','路由地址','请求类型','路由参 ...
- 【转载】Gradle学习 第四章:安装Gradle
转载地址:http://ask.android-studio.org/?/article/16 4.1. Prerequisites 前提条件Gradle requires a Java JDK or ...
- lua使用ffi调用c程序的函数
参考: https://blog.csdn.net/weiwangchao_/article/details/16880401 http://luajit.org/ext_c_api.html h ...
- 腾讯面试Android高级岗,居然被一个多线程基础面倒了?
前言 一个在深圳从事开发五年的老友一个月前从原公司辞职后,昨天去腾讯总部面试Android高级岗,一面的时候,自我介绍后,陆陆续续问了很多问题,有着五年的从业经验很多项目开发的技术问题都回答的很通顺, ...
- JavaScript三种方法获取地址栏参数的方法
今天碰到要在一个页面获取另外一个页面url传过来的参数,一开始很本能的想到了用 split(“?”)这样一步步的分解出需要的参数. 后来想了一下,肯定会有更加简单的方法的!所以在网上找到了两个很又简单 ...
- xshell 连接报错 Disconnected from remote host
Type `help' to learn how to use Xshell prompt. [c:\~]$ Connecting to 20.0.0.91:22...Connection estab ...
- Xcode添加库文件framework (转)
首先需要了解一下iOS中静态库和动态库.framework的概念 静态库与动态库的区别 首先来看什么是库,库(Library)说白了就是一段编译好的二进制代码,加上头文件就可以供别人使用. 什么时候我 ...