storm并行
Storm并行度
public class WordCountTopology {
private static final String SENTENCE_SPOUT_ID = "sentence-spout";
private static final String SPLIT_BOLT_ID = "split-bolt";
private static final String COUNT_BOLT_ID = "count-bolt";
private static final String REPORT_BOLT_ID = "report-bolt";
private static final String TOPOLOGY_NAME = "word-count-topology";
public static void main(String[] args) throws
Exception {
SentenceSpout spout = new SentenceSpout();
SplitSentenceBolt splitBolt = new
SplitSentenceBolt();
WordCountBolt countBolt = new WordCountBolt();
ReportBolt reportBolt = new ReportBolt();
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(SENTENCE_SPOUT_ID, spout);
// SentenceSpout --> SplitSentenceBolt
builder.setBolt(SPLIT_BOLT_ID, splitBolt).shuffleGrouping(SENTENCE_SPOUT_ID);
// SplitSentenceBolt --> WordCountBolt
builder.setBolt(COUNT_BOLT_ID, countBolt).fieldsGrouping(
SPLIT_BOLT_ID, new Fields("word"));
// WordCountBolt --> ReportBolt
builder.setBolt(REPORT_BOLT_ID, reportBolt).globalGrouping(COUNT_BOLT_ID);
Config config = new Config();
LocalCluster cluster = new LocalCluster();
cluster.submitTopology(TOPOLOGY_NAME, config,
builder.createTopology());
Utils.sleep(10000);
cluster.killTopology(TOPOLOGY_NAME);
cluster.shutdown();
}
}
流程:(包括一个spout和三个bolt)
sentence-spout 生成句子
split-bolt 切分句子传入单词
count-bolt 单词统计
report-bolt 结果输出
1、WordCountTopology并行性
2、在拓扑中增加worker
Config config = new Config();
config.setNumWorkers(2);
3、配置executor数和task数
builder.setSpout(SENTENCE_SPOUT_ID, spout, 2);
builder.setBolt(SPLIT_BOLT_ID, splitBolt, 2).setNumTasks(4)
.shuffleGrouping(SENTENCE_SPOUT_ID);
builder.setBolt(COUNT_BOLT_ID, countBolt, 4)
.fieldsGrouping(SPLIT_BOLT_ID, newFields("word"));
--- FINAL COUNTS ---
a : 2726
ate : 2722
beverages : 2723
cold : 2723
cow : 2726
dog : 5445
don't : 5444
fleas : 5451
has : 2723
have : 2722
homework : 2722
i : 8175
like : 5449
man : 2722
my : 5445
the : 2727
think : 2722
--------------
原来的结果:
--- FINAL COUNTS ---
a : 1426
ate : 1426
beverages : 1426
cold : 1426
cow : 1426
dog : 2852
don't : 2851
fleas : 2851
has : 1426
have : 1426
homework : 1426
i : 4276
like : 2851
man : 1426
my : 2852
the : 1426
think : 1425
--------------
Storm流分组
public interface CustomStreamGrouping extends Serializable {
void prepare(WorkerTopologyContext context, GlobalStreamId stream, List<Integer> targetTasks);
List<Integer> chooseTasks(int taskId, List<Object> values);
}
public void nextTuple() {
if(index < sentences.length){
this.collector.emit(new Values(sentences[index]));
index++;
}
Utils.waitForMillis(1);
}
--- FINAL COUNTS ---
a : 2
ate : 2
beverages : 2
cold : 2
cow : 2
dog : 4
don't : 4
fleas : 4
has : 2
have : 2
homework : 2
i : 6
like : 4
man : 2
my : 4
the : 2
think : 2
--------------
原来:
builder.setBolt(COUNT_BOLT_ID, countBolt, 4)
.fieldsGrouping(SPLIT_BOLT_ID, newFields("word"))
改成:
builder.setBolt(COUNT_BOLT_ID, countBolt, 4)
.shuffleGrouping(SPLIT_BOLT_ID);
--- FINAL COUNTS ---
a : 1
ate : 2
beverages : 1
cold : 1
cow : 1
dog : 2
don't : 2
fleas : 1
has : 1
have : 1
homework : 1
i : 3
like : 1
man : 1
my : 1
the : 1
think : 1
--------------
我们计算不正确了,因为CountBolt参数是有状态:它保留一个计数为每个收到的单词的。在这种情况下,我们计算的准确性取决于当组件被并行化基于元组的内容分组的能力。引入的错误我们将只显示如果CountBolt参数大于1的并行性。这强调了测试拓扑与各种并行配置的重要性。
1、Tip
2、消息处理保证
3、Spout的可靠性
public interface ISpout extends Serializable {
void open(Map conf, TopologyContext context, SpoutOutputCollector collector);
void close();
void nextTuple();
void ack(Object msgId);
void fail(Object msgId);
}
collector.emit(new Values("value1", "value2") ,msgId);
4、bolt可靠性
collector.emit(tuple, new Values(word));
collector.emit(new Values(word));
this.collector.ack(tuple);
this.collector.fail(tuple)
5、可靠的word count(修改后的程序)
public class SentenceSpout extends BaseRichSpout {
private ConcurrentHashMap<UUID, Values> pending;
private SpoutOutputCollector collector;
private String[] sentences = {
"my dog has fleas",
"i like cold beverages",
"the dog ate my homework",
"don't have a cow man",
"i don't think i like fleas"
};
private int index = 0;
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("sentence"));
}
public void open(Map config, TopologyContext context,
SpoutOutputCollector collector) {
this.collector = collector;
this.pending = new ConcurrentHashMap<UUID, Values>();
}
public void nextTuple() {
Values values = new Values(sentences[index]);
UUID msgId = UUID.randomUUID();
this.pending.put(msgId, values);
this.collector.emit(values, msgId);
index++;
if (index >= sentences.length) {
index = 0;
}
Utils.sleep(1);
}
public void ack(Object msgId) {
this.pending.remove(msgId);
}
public void fail(Object msgId) {
this.collector.emit(this.pending.get(msgId), msgId);
}
}
public class ReliableSplitSentenceBolt extends BaseRichBolt {
private OutputCollector collector;
public void prepare(Map config, TopologyContext
context, OutputCollector collector) {
this.collector = collector;
}
public void execute(Tuple tuple) {
String sentence = tuple.getStringByField("sentence");
String[] words = sentence.split(" ");
for(String word : words){
this.collector.emit(tuple, new Values(word));
}
this.collector.ack(tuple);
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
}
storm并行的更多相关文章
- storm的并发
1 storm并行的基本概念 storm集群中的一个机器可以运行一个或者多个worker,对应于一个或者多个topologies. 1个worker进程运行1个或多个excutor线程.每个worke ...
- 【Storm篇】--Storm并发机制
一.前述 为了提高Storm的并行能力,通常需要设置并行. 二.具体原理 1. Storm并行分为几个方面: Worker – 进程一个Topology拓扑会包含一个或多个Worker(每个Worke ...
- 【原】理解Storm拓扑的并行
Storm入门教程 1. Storm基础 Storm Storm主要特点 Storm基本概念 Storm调度器 Storm配置 Guaranteeing Message Processing(消息处理 ...
- Storm集群中执行的各种组件及其并行
一.Storm中执行的组件 我们知道,Storm的强大之处就是能够非常easy地在集群中横向拓展它的计算能力,它会把整个运算过程切割成多个独立的tasks在集群中进行并行计算.在Storm中 ...
- 大数据处理框架之Strom: Storm拓扑的并行机制和通信机制
一.并行机制 Storm的并行度 ,通过提高并行度可以提高storm程序的计算能力. 1.组件关系:Supervisor node物理节点,可以运行1到多个worker,不能超过supervisor. ...
- Storm介绍(一)
作者:Jack47 PS:如果喜欢我写的文章,欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 内容简介 本文是Storm系列之一,介绍了Storm的起源,Storm ...
- Storm构建分布式实时处理应用初探
最近利用闲暇时间,又重新研读了一下Storm.认真对比了一下Hadoop,前者更擅长的是,实时流式数据处理,后者更擅长的是基于HDFS,通过MapReduce方式的离线数据分析计算.对于Hadoop, ...
- Storm介绍及与Spark Streaming对比
Storm介绍 Storm是由Twitter开源的分布式.高容错的实时处理系统,它的出现令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求.Storm常用于在实时分析.在线机器学 ...
- storm 入门原理介绍
1.hadoop有master与slave,Storm与之对应的节点是什么? 2.Storm控制节点上面运行一个后台程序被称之为什么? 3.Supervisor的作用是什么? 4.Topology与W ...
随机推荐
- 基于DockerSwarm 部署InfluxDB并使用JAVA操作
Docker中部署InfluxDB 1.运行容器 $ docker run --rm \ -e INFLUXDB_DB=db0 -e INFLUXDB_ADMIN_ENABLED=true \ -e ...
- Centos7 python虚拟环境virtualenv和virtualenvwrapper简单介绍
我的系统版本是 [root@localhost ~]# cat /etc/os-release 我的Python版本是 [root@localhost ~]# python3 -V 关于如何安装Pyt ...
- python类的实例化
class Person(object): # 创建类 def __init__(self, name): # 构造函数 self.name = name def getName(self): # 类 ...
- C#实现outlook自动签名
Outlook下实现自动签名的方式 网上找到一篇资料是在outlook里用vba实现的,但是这样实现的方式由于数字认证的问题不便于部署 在此介绍一种C#下实现的方式,目前确定的outlook版本为 ...
- Centos下安装LoadRunner负载机
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAd0AAADfCAIAAAA84J6GAAAgAElEQVR4nJzb93cbR6In+uK/8v6Fd8
- SpringCloud2.0 Hystrix Feign 基于Feign实现断路器
原文:https://www.cnblogs.com/songlu/p/9968953.html 1.启动[服务中心]集群,工程名:springcloud-eureka-server 参考 Sprin ...
- Netty实战入门详解——让你彻底记住什么是Netty(看不懂你来找我)
一.Netty 简介 Netty 是基于 Java NIO 的异步事件驱动的网络应用框架,使用 Netty 可以快速开发网络应用,Netty 提供了高层次的抽象来简化 TCP 和 UDP 服务器的编程 ...
- KL散度=交叉熵-熵
熵:可以表示一个事件A的自信息量,也就是A包含多少信息. KL散度:可以用来表示从事件A的角度来看,事件B有多大不同. 交叉熵:可以用来表示从事件A的角度来看,如何描述事件B. 一种信息论的解释是: ...
- N种自动化测试框架(包含自动化和性能,总有一款适合你)
不知不觉,分享的框架已经6个了(准确说应该是4个),仅仅是接口的. 这些框架都是最基础的框架,需要根据实际使用场景进行完善,大家就当练手实践吧. 不需要写代码的自动化框架 JMeter + Ant+ ...
- NOIP 2013 积木大赛
洛谷 P1969 积木大赛 洛谷传送门 JDOJ 2229: [NOIP2013]积木大赛 D2 T1 JDOJ传送门 题目描述 春春幼儿园举办了一年一度的"积木大赛".今年比赛的 ...