The Unique MST
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 22715   Accepted: 8055

Description

Given a connected undirected graph, tell if its minimum spanning tree is unique. 



Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 

1. V' = V. 

2. T is connected and acyclic. 



Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all
the edges in E'. 

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a
triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!

#include <iostream>
#include <stdio.h>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#define N 10090
using namespace std; struct Node
{
int a,b,c;
bool same,used,del;
}f[N];
int n,m;
int fa[N]; int findfa(int x)
{
if(x!=fa[x])
fa[x]=findfa(fa[x]); return fa[x];
} void init()
{
for(int i=0;i<200;i++)
fa[i]=i;
} int cmp(Node a,Node b)
{
return a.c<b.c;
} bool first; void make_same(int m)
{
for(int i=1;i<m;i++)
if(f[i].c==f[i-1].c)
f[i-1].same=true;
} int kruscal(int m)
{
int ans=0;
for(int i=0;i<m;i++)
{
if(f[i].del)continue; int x=findfa(f[i].a);
int y=findfa(f[i].b); if(x==y)
continue;
else
{
fa[x]=y; ans+=f[i].c;
if(first)
f[i].used=true; }
}
return ans;
} int main()
{
int ca=1;
scanf("%d",&ca); while(ca--)
{
scanf("%d %d",&n,&m);
for(int i=0;i<m;i++)
{
scanf("%d %d %d",&f[i].a,&f[i].b,&f[i].c);
f[i].del=false;f[i].same=false;f[i].used=false;
} sort(f,f+m,cmp); first=true;
init(); int ans1=kruscal(m);
first=false; make_same(m); int flag=0; for(int i=0;i<m;i++)
{
if(f[i].used && f[i].same)//used表示在第一次求出的最小生成树中加入过的边
{//same表示在存在和已加入边权值同样的边,此时标记删除该边在推断是否ans相等 f[i].del=true;
init(); int ans2=kruscal(m); //cout<<"ans2="<<ans2<<endl;
if(ans1==ans2)
{
puts("Not Unique!");
flag=1;
break;
}
f[i].del=false;
}
} if(flag==0)
printf("%d\n",ans1); } return 0;
}

POJ 1679 The Unique MST 推断最小生成树是否唯一的更多相关文章

  1. poj 1679 The Unique MST (判定最小生成树是否唯一)

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

  2. poj 1679 The Unique MST 判断最小生成树是否唯一(图论)

    借用的是Kruskal的并查集,算法中的一点添加和改动. 通过判定其中有多少条可选的边,然后跟最小生成树所需边做比较,可选的边多于所选边,那么肯定方案不唯一. 如果不知道这个最小生成树的算法,还是先去 ...

  3. 【POJ 1679 The Unique MST】最小生成树

    无向连通图(无重边),判断最小生成树是否唯一,若唯一求边权和. 分析生成树的生成过程,只有一个圈内出现权值相同的边才会出现权值和相等但“异构”的生成树.(并不一定是最小生成树) 分析贪心策略求最小生成 ...

  4. POJ 1679 The Unique MST (最小生成树)

    The Unique MST 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/J Description Given a conn ...

  5. POJ 1679 The Unique MST(最小生成树)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  6. POJ 1679 The Unique MST 【最小生成树/次小生成树模板】

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22668   Accepted: 8038 D ...

  7. (poj)1679 The Unique MST 求最小生成树是否唯一 (求次小生成树与最小生成树是否一样)

    Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...

  8. poj 1679 The Unique MST 【次小生成树】【模板】

    题目:poj 1679 The Unique MST 题意:给你一颗树,让你求最小生成树和次小生成树值是否相等. 分析:这个题目关键在于求解次小生成树. 方法是,依次枚举不在最小生成树上的边,然后加入 ...

  9. poj 1679 The Unique MST(唯一的最小生成树)

    http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submis ...

随机推荐

  1. chrome ubuntu启动不了

    安装好后,点击图标没反应 用命令行运行chrome并显示log:google-chrome --enable-logging=stderr --log-level=4 报错如下: 解决:安装更高版本的 ...

  2. 在实现栈中原来功能的基础上,获得一个栈中最小值,要求时间复杂度 bigO(1)

    思路: 准备两个栈 stackData stackMin package my_basic; import java.util.Stack; public class GetMinStack { St ...

  3. 关于DTCC数据库技术大会

    本次DTCC数据库技术大会是第9届了,这次大会虽然有不少公司的产品推介,总体来说还是有不少干货的. 专场较多,有选择地主要听了大数据实践跟流式计算这块.网易跟滴滴的分享比较不错. 了解到了现在大家是用 ...

  4. JS 数组间的操作

    JS 数组间的操作(交集,并集.差集) 以下是js数组之间常用的操作,如交集,并集.差集等. 迭代 each是一个集合迭代函数,可以将一个函数作为参数和一组可以选的参数.依次将集合的每一个元素和可选参 ...

  5. NodeJs运行服务器-day01

    //读取内置模块http,这个模块开发服务器用的var http =require('http'); var server=http.createServer(function(req,res){ r ...

  6. PTA|团体程序设计天梯赛-练习题目题解锦集(C/C++)(持续更新中……)

    PTA|团体程序设计天梯赛-练习题目题解锦集(持续更新中) 实现语言:C/C++:      欢迎各位看官交流讨论.指导题解错误:或者分享更快的方法!! 题目链接:https://pintia.cn/ ...

  7. luogu 1968 美元汇率

    https://www.luogu.org/problemnew/show/P1968 定义二维数组f[ ][ ],f[i][1]表示在第i天将马克变为美元,f[i][2]表示在第i天将美元变为马克. ...

  8. luogu 1608 路径统计--最短路计数

    https://www.luogu.org/problemnew/show/P1608 题意https://www.cnblogs.com/rmy020718/p/9440588.html相似,建议还 ...

  9. LInux设备驱动分析—— kmalloc和kzalloc函数

    今晚在研究EVM5728开发板上面Linux系统的IIC设备驱动程序,偶然之间看到驱动程序中有一处使用了kzalloc函数,本人之前都是使用Linux内核提供的kmalloc / kfree函数来给设 ...

  10. 计算机网络之传输层 下(TCP)

    1. TCP的特点 特点:它是一个点到点的通信机制,只能有一个发送方和一个接收方:它提供是一个可靠的,按序的字节流机制:使用流水线机制,通过拥塞控制和流量控制的机制设置窗口尺寸:发送方和接收方都有缓存 ...