POJ-1061青蛙的约会,扩展欧几里德求逆元!
以前不止一次看过这个题,但都没有去补。。好吧,现在慢慢来做。
友情提示:先学扩展欧几里德算法在来看效果更好哟!
题意:两只青蛙在一个总长为L的环上,初始位置分别在x,y点,他们同时同向起跳,起跳都是同步的,速度分别是m,n。求跳多少次后才会相遇。
思路:会欧几里德算法的话简单分析一下就是裸模板了。但这题确实花了很多时间。
我们来分析一下这题:我们知道最终位置是在同一点相遇,于是假设跳了s次(两只青蛙都是同时同步跳),那么就有(x+s*m)%L=(y+s*n)%L,即同余式:(x+s*m)=(y+s*n)%L,拆分一下即:s*(m-n)=(y-x)%L,即:s*(n-m)+k*L=x-y;这不就是ax+by=c;我们判断gcd(a,b)是否整除c即可,若不整除则“impossible\n”。反之--------------------我们用扩展欧几里德求出来的x0,y0是符合a*x0+b*y0=gcd(a,b)的,即上式s0*(n-m)+k0*L=gcd(n-m,L);那么原式s*(n-m)+k*L=x-y中的s=s0*((n-m)/gcd(n-m,L))。
理解了以上,代码也就好写了,但小菜还有一点不明白答案s为什么要先取余L再加上L再取余L.....
const int N=1e6+10;
ll e_gcd(ll a,ll b,ll &x,ll &y)
{
if(a==0&&b==0) return -1;
if(!b)
{
x=1,y=0;
return a;
}
ll d=e_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main()
{
ll x,y,n,m,l;
while(~scanf("%I64d%I64d%I64d%I64d%I64d",&x,&y,&m,&n,&l))
{
ll d=x-y;
ll s,t;
ll ans=e_gcd(n-m,l,s,t);
if(d%ans) printf("Impossible\n");
else printf("%I64d\n",(s*(d/ans)%l+l)%l);
}
return 0;
}
POJ-1061青蛙的约会,扩展欧几里德求逆元!的更多相关文章
- POJ 1061 青蛙的约会 扩展欧几里德--解不定方程
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 81606 Accepted: 14116 Descripti ...
- poj 1061 青蛙的约会 扩展欧几里德
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Description 两 只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们 ...
- POJ 1061 青蛙的约会(扩展GCD求模线性方程)
题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> ...
- poj 1061 青蛙的约会 (扩展欧几里得模板)
青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Status ...
- Poj 1061 青蛙的约会(扩展欧几里得解线性同余式)
一.Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要 ...
- POJ - 1061 青蛙的约会 扩展欧几里得 + (贝祖公式)最小正整数解
题意: 青蛙 A 和 青蛙 B ,在同一纬度按照相同方向跳跃相同步数,A的起点为X ,每一步距离为m,B的起点为Y,每一步距离为 n,一圈的长度为L,求最小跳跃步数. 思路: 一开始按照追击问题来写, ...
- poj 1061 青蛙的约会(扩展gcd)
题目链接 题意:两只青蛙从数轴正方向跑,给出各自所在位置, 和数轴长度,和各自一次跳跃的步数,问最少多少步能相遇. 分析:(x+m*t) - (y+n*t) = p * L;(t是跳的次数,L是a青蛙 ...
- (Relax 数论1.6)POJ 1061 青蛙的约会(扩展的欧几里得公式)
/* * POJ_1061.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> # ...
- POJ 1061 青蛙的约会 扩展欧几里得
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...
随机推荐
- Java三大特性之---封装
封装从字面上来理解就是包装的意思,专业点就是信息隐藏,是指利用抽象数据类型将数据和基于数据的操作封装在一起,使其构成一个不可分割的独立实体,数据被保护在抽象数据类型的内部,尽可能地隐藏内部的细节,只保 ...
- ASP.NET MVC5的一个轻量级的框架学习的第一天
第二步第三部 这是第一天的小试成功,怪自己太笨了,一个错排查好久,还好有源码看着了解,后续还得多努力,
- Oracle、MySQL和SqlServe分页查询的语句区别
★先来定义分页语句将要用到的几个参数: int currentPage ; //当前页 int pageRecord ; //每页显示记录数 以之前的ADDRESSBOOK数据表为例(每页显示10条记 ...
- Java&Xml教程(九)Java中通过XSD校验XML合法性
Java XML校验API能够通过XSD(XML Schema Definition)校验XML文件内容的合法性.在下面的案例中使用javax.xml.validation.Validator 类通过 ...
- PMP项目管理学习笔记(5)——整合管理之制定项目章程
关于两个输入 在很多过程中,会用到这两个输入: 企业环境要素 是关于你的公司如何开展业务所需要知道的所有信息. 在你计划项目时,有很多关于公司的信息会非常有用,你需要知道各个不同部门是如何运作的,你所 ...
- 云态(YunCloud)的Centos服务器修改dns教程
DNS(Domain Name System,域名系统),因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串.通过主机名,最终 ...
- Android(java)学习笔记170:服务(service)之服务的生命周期 与 两种启动服务的区别
1.之前我们在Android(java)学习笔记171:Service生命周期 (2015-08-18 10:56)说明过,可以回头看看: 2.Service 的两种启动方法和区别: (1)Servi ...
- PE基础1
PE文件概述 文件格式 .png ..mp4..gif..dll等等,这些文件都具有不同格式 不能随意修改这些文件,否则将无法打开 PE文件(可执行文件) 学习PE文件目标 掌握PE文件就掌握wino ...
- 油猴 tamperMonkey 在百度首页 添加自己的自定义链接
发现 GM_addStyle 函数不能用了,从写加载css函数. 剩下找个定位 添加内容 就很简单了. // ==UserScript== // @name helloWorld // @namesp ...
- 第三周:Excel
一.Excel的常见函数: 1.文本清洗函数: https://ask.hellobi.com/blog/cbdingchebao/10149