HDOJ--1869--六度分离(用三种算法写的,希望能比較出来他们之间的差别)
六度分离
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1791 Accepted Submission(s): 696
Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。
他已经得到了他们之间的相识关系,如今就请你帮他验证一下“六度分离”是否成立吧。
对于每组測试。第一行包括两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行。每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其它随意两人之间均不相识。
思路:额,把每条边的权值看做1。然后比較随意两个点的距离。看是否存在大于7的。由于是6个朋友,所以应该是7条边以内都能够连接不论什么点。(第一次一遍过一道题,简直开心的不要不要的。)
#include<stdio.h>
#include<string.h>
#define INF 0x3f3f3f3f
int vis[110],map[110][110],dis[110];
int n,m;
void init(){
int i,j;
for(i=0;i<n;i++)
for(j=0;j<n;j++){
if(j==i)
map[i][j]=map[j][i]=0;
else
map[i][j]=map[j][i]=INF;
}
}
void dijkstra(int beg){
int i;
memset(vis,0,sizeof(vis));
for(i=0;i<n;i++)
dis[i]=map[beg][i];
for(i=0;i<n;i++){
int j,k,temp=INF;
for(j=0;j<n;j++)
if(!vis[j]&&temp>dis[j])
temp=dis[k=j];
if(temp==INF)
break;
vis[k]=1;
for(j=0;j<n;j++)
if(!vis[j]&&dis[j]>dis[k]+map[k][j])
dis[j]=dis[k]+map[k][j];
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
init();
for(int i=0;i<m;i++){
int a,b;
scanf("%d%d",&a,&b);
map[a][b]=map[b][a]=1;
}
int i,j,max=-1;
for(i=0;i<n;i++){
dijkstra(i);
for(j=i;j<n;j++){
if(max<dis[j])
max=dis[j];
}
}
if(max>7)
printf("No\n");
else
printf("Yes\n");
}
return 0;
}
用SPFA做了一次纯粹练一下自己对模板的熟悉度。
#include<stdio.h>
#include<string.h>
#include<queue>
#define N 110
#define M 410
#define INF 0x3f3f3f3f
using namespace std;
int dis[N],vis[N],head[N],n,m,edgenum;
struct node{
int from,to,cost,next;
}edge[M];
void init(){
edgenum=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v){
node E={u,v,1,head[u]};
edge[edgenum]=E;
head[u]=edgenum++;
}
void spfa(int beg){
queue<int>q;
memset(dis,INF,sizeof(dis));
memset(vis,0,sizeof(vis));
dis[beg]=0;
vis[beg]=1;
q.push(beg);
while(!q.empty()){
int i,u=q.front();
q.pop();
vis[u]=0;
for(i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].to;
if(dis[v]>dis[u]+edge[i].cost){
dis[v]=dis[u]+edge[i].cost;
if(!vis[v]){
vis[v]=1;
q.push(v);
}
}
}
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
init();
while(m--){
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
int i,j,max=-1;
for(i=0;i<n;i++){
spfa(i);
for(j=0;j<n;j++)
if(max<dis[j])
max=dis[j];
}
if(max>7)
printf("No\n");
else
printf("Yes\n");
}
return 0;
}
floyd算法:
#include<stdio.h>
#include<string.h>
#define INF 0x3f3f3f3f
#define N 220
int dis[N][N],n,m;
void init(int num){
memset(dis,INF,sizeof(dis));
for(int i=0;i<num;i++)
for(int j=0;j<num;j++)
if(i==j)
dis[i][j]=0;
}
void floyd(){
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
if(dis[i][j]>dis[i][k]+dis[k][j])
dis[i][j]=dis[i][k]+dis[k][j];
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
init(n);
while(m--){
int a,b;
scanf("%d%d",&a,&b);
dis[a][b]=dis[b][a]=1;
}
floyd();
int flag=0;
for(int i=0;i<n;i++)
for(int j=i;j<n;j++)
if(dis[i][j]>7)
flag=1;
if(flag)
printf("No\n");
else
printf("Yes\n");
}
return 0;
}
HDOJ--1869--六度分离(用三种算法写的,希望能比較出来他们之间的差别)的更多相关文章
- jQuery中.bind() .live() .delegate() .on()的区别 和 三种方式写光棒事件 动画
地狱的镰刀 bind(type,[data],fn) 为每个匹配元素的特定事件绑定事件处理函数. $("a").bind("click",function(){ ...
- JavaScript--------------------jQuery中.bind() .live() .delegate() .on()的区别 和 三种方式写光棒事件 动画
bind(type,[data],fn) 为每个匹配元素的特定事件绑定事件处理函数. $("a").bind("click",function(){alert( ...
- 最短路问题的三种算法&模板
最短路算法&模板 最短路问题是图论的基础问题.本篇随笔就图论中最短路问题进行剖析,讲解常用的三种最短路算法:Floyd算法.Dijkstra算法及SPFA算法,并给出三种算法的模板.流畅阅读本 ...
- c语言求回文数的三种算法的描述
c语言求回文数的三种算法的描述 题目描述 注意:(这些回文数都没有前导0) 1位的回文数有0,1,2,3,4,5,6,7,8,9 共10个: 2位的回文数有11,22,33,44,55,66,77,8 ...
- Java利用DES/3DES/AES这三种算法分别实现对称加密
转载地址:http://blog.csdn.net/smartbetter/article/details/54017759 有两句话是这么说的: 1)算法和数据结构就是编程的一个重要部分,你若失掉了 ...
- 图文实例解析,InnoDB 存储引擎中行锁的三种算法
前文提到,对于 InnoDB 来说,随时都可以加锁(关于加锁的 SQL 语句这里就不说了,忘记的小伙伴可以翻一下上篇文章),但是并非随时都可以解锁.具体来说,InnoDB 采用的是两阶段锁定协议(tw ...
- 内存分配---FF、BF、WF三种算法
动态分区分配是根据进程的实际需要,动态的为之分配内存空间.而在实现可变分区分配时,将涉及到分区分配中 所用的数据结构.分区分配算法和分区的分配与内存回收的过程. 分区分配中的数据结构:(1)描述空闲块 ...
- Django中三种方式写form表单
除了在html中自己手写form表单外,django还可以通过 继承django.forms.Form 或django.forms.ModelForm两个类来自动生成form表单,下面依次利用三种方式 ...
- hdoj 1869 六度分离
Problem Description 1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相 ...
随机推荐
- xtu数据结构 G. Count the Colors
G. Count the Colors Time Limit: 2000ms Memory Limit: 65536KB 64-bit integer IO format: %lld Jav ...
- Leetcode 322.零钱兑换
零钱兑换 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输入: co ...
- 【Luogu】P2831愤怒的小鸟(手算抛物线+状压DP)
题目链接 设f[s]表示二进制集合表示下的s集合都打掉用了多少小鸟. 预处理出lne[i][j]表示i.j确定的抛物线能打掉的小鸟集合. 于是就有f[s|lne[i][j]]=min(f[s|lne[ ...
- HDU——1195Open the Lock(双向BFS)
Open the Lock Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- BZOJ 1069 [SCOI2007]最大土地面积 ——计算几何
枚举对角线,然后旋转卡壳即可. #include <map> #include <cmath> #include <queue> #include <cstd ...
- 转载:c++打印日志文件的一个模板
转载地址:http://blog.csdn.net/huangyifei_1111/article/details/52134914 NetDataLog.h #ifndef NETDATALOG_H ...
- 类 this指针 const成员函数 std::string isbn() const {return bookNo;}
转载:http://www.cnblogs.com/little-sjq/p/9fed5450f45316cf35f4b1c17f2f6361.html C++ Primer 第07章 类 7.1.2 ...
- 使用反射获取类中的属性(可用于动态返回PO类的列,当做表格的表头)
//利用反射取类中的属性字段 try { Class clazz = Class.forName("houji.bean.model.TaskModel"); Field[] fi ...
- Mountaineers
Mountaineers 时间限制: 3 Sec 内存限制: 128 MB 题目描述 The Chilean Andes have become increasingly popular as a ...
- Vxlan简介
1.为什么需要Vxlan 1.什么是VXLAN VXLAN(Virtual eXtensible LAN可扩展虚拟局域网),是一种mac in UDP技术.传统的二层帧被封装到了UDP的报文中,通过U ...