链接:https://www.nowcoder.com/acm/contest/141/J

题目描述

Eddy has graduated from college. Currently, he is finding his future job and a place to live. Since Eddy is currently living in Tien-long country, he wants to choose a place inside Tien-long country to live. Surprisingly, Tien-long country can be represented as a simple polygon on 2D-plane. More surprisingly, Eddy can choose any place inside Tien-long country to live. The most important thing Eddy concerns is the distance from his place to the working place. He wants to live neither too close nor too far to the working place. The more specific definition of "close" and "far" is related to working place
Eddy has M choices to work in the future. For each working place, it can be represented as a point on 2D-plane. And, for each working place, Eddy has two magic parameters P and Q such that if Eddy is going to work in this place, he will choose a place to live which is closer to the working place than portion of all possible living place choices.
Now, Eddy is wondering that for each working place, how far will he lives to the working place. Since Eddy is now busy on deciding where to work on, you come to help him calculate the answers.

For example, if the coordinates of points of Tien-long country is (0,0), (2,0), (2, 2), (0, 2) in counter-clockwise order. And, one possible working place is at (1,1) and P=1, Q=2. Then, Eddy should choose a place to live which is closer to (1, 1) than half of the choices. The distance from the place Eddy will live to the working place will be about 0.7978845608.

输入描述:

The first line contains one positive integer N indicating the number of points of the polygon representing Tien-long country.
Each of following N lines contains two space-separated integer (xi,yi)
indicating the coordinate of i-th points. These points is given in clockwise or counter-clockwise order and form the polygon.
Following line contains one positive integer M indicating the number of possible working place Eddy can choose from.
Each of following M lines contains four space-separated integer xj,yj,P,Q, where (xj,yj) indicating the j-th working place is at (xj,yj) and
magic parameters is P and Q.
3<=N<=200
1<=M<=200
1<=P<Q<=200
|xi||yi||xj||yj|<=1000
It's guaranteed that the given points form a simple polygon.

输出描述:

Output M lines. For i-th line, output one number indicating the distance from the place Eddy will live to the i-th working place.

Absolutely or relatively error within 10^-6 will be considered correct.

输入例子:
4
0 0
2 0
2 2
0 2
1
1 1 1 2
输出例子:
0.797884560809

-->

示例1

输入

4
0 0
2 0
2 2
0 2
1
1 1 1 2

输出

0.797884560809
示例2

输入

3
0 0
1 0
2 1
2
0 0 1 2
1 1 1 3

输出

1.040111537176
0.868735603376

题意  一个国家由n个点组成  m次询问 每次给出一个工作地点(xj,yj)  从国家里选取居住地点 要满足 选取的点比国家内Q/P的点离工作地点更近  问居住点到工作地点的距离

解析  我们可以二分答案mid 然后判断以(xj,yj)为圆心mid为半径的圆 与 国家相交的面积 与 国家面积的比值 二分下去。

AC代码   偷得模板 。。。。

 #include <bits/stdc++.h>
#define LL long long
#define PI 3.1415926535897932384626
#define maxn 1000
#define EXIT exit(0);
#define DEBUG puts("Here is a BUG");
#define CLEAR(name, init) memset(name, init, sizeof(name))
const double eps = 1e-;
const int MAXN = (int)1e9 + ;
using namespace std;
#define Vector Point
int dcmp(double x) { return fabs(x) < eps ? : (x < ? - : ); }
struct Point {
double x, y; Point(const Point& rhs): x(rhs.x), y(rhs.y) { } //拷贝构造函数
Point(double x = 0.0, double y = 0.0): x(x), y(y) { } //构造函数 friend istream& operator >> (istream& in, Point& P) { return in >> P.x >> P.y; }
friend ostream& operator << (ostream& out, const Point& P) { return out << P.x << ' ' << P.y; } friend Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x+B.x, A.y+B.y); }
friend Vector operator - (const Point& A, const Point& B) { return Vector(A.x-B.x, A.y-B.y); }
friend Vector operator * (const Vector& A, const double& p) { return Vector(A.x*p, A.y*p); }
friend Vector operator / (const Vector& A, const double& p) { return Vector(A.x/p, A.y/p); }
friend bool operator == (const Point& A, const Point& B) { return dcmp(A.x-B.x) == && dcmp(A.y-B.y) == ; }
friend bool operator < (const Point& A, const Point& B) { return A.x < B.x || (A.x == B.x && A.y < B.y); } void in(void) { scanf("%lf%lf", &x, &y); }
void out(void) { printf("%lf %lf", x, y); }
}; template <class T> T sqr(T x) { return x * x;}
double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; } //点积
double Length(const Vector& A){ return sqrt(Dot(A, A)); }
double Angle(const Vector& A, const Vector& B) { return acos(Dot(A, B)/Length(A)/Length(B)); } //向量夹角
double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; } //叉积
double Area(const Point& A, const Point& B, const Point& C) { return fabs(Cross(B-A, C-A)); }
Vector normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
double angle(Vector x) { return atan2(x.y, x.x);} Vector vecunit(Vector x){ return x / Length(x);} //单位向量
struct Circle {
Point c; //圆心
double r; //半径 Circle() { }
Circle(const Circle& rhs): c(rhs.c), r(rhs.r) { }
Circle(const Point& c, const double& r): c(c), r(r) { } Point point(double ang) const { return Point(c.x + cos(ang)*r, c.y + sin(ang)*r); } //圆心角所对应的点
double area(void) const { return PI * r * r; }
};
struct Line {
Point P; //直线上一点
Vector dir; //方向向量(半平面交中该向量左侧表示相应的半平面)
double ang; //极角,即从x正半轴旋转到向量dir所需要的角(弧度) Line() { } //构造函数
Line(const Line& L): P(L.P), dir(L.dir), ang(L.ang) { }
Line(const Point& P, const Vector& dir): P(P), dir(dir) { ang = atan2(dir.y, dir.x); } bool operator < (const Line& L) const { //极角排序
return ang < L.ang;
} Point point(double t) { return P + dir*t; }
}; bool InCircle(Point x, Circle c) { return dcmp(c.r*c.r - Length(c.c - x)*Length(c.c - x)) >= ;}
Point GetIntersection(Line a, Line b) //线段交点
{
Vector u = a.P-b.P;
double t = Cross(b.dir, u) / Cross(a.dir, b.dir);
return a.P + a.dir*t;
} bool OnSegment(Point p, Point a1, Point a2)
{
return dcmp(Cross(a1-p, a2-p)) == && dcmp(Dot(a1-p, a2-p)) < ;
}
int getSegCircleIntersection(Line L, Circle C, Point* sol)
{
Vector nor = normal(L.dir);
Line pl = Line(C.c, nor);
Point ip = GetIntersection(pl, L);
double dis = Length(ip - C.c);
if (dcmp(dis - C.r) > ) return ;
Point dxy = vecunit(L.dir) * sqrt(C.r*C.r - dis*dis);
int ret = ;
sol[ret] = ip + dxy;
if (OnSegment(sol[ret], L.P, L.point())) ret++;
sol[ret] = ip - dxy;
if (OnSegment(sol[ret], L.P, L.point())) ret++;
return ret;
} double SegCircleArea(Circle C, Point a, Point b) //线段切割圆
{
double a1 = angle(a - C.c);
double a2 = angle(b - C.c);
double da = fabs(a1 - a2);
if (da > PI) da = PI * 2.0 - da;
return dcmp(Cross(b - C.c, a - C.c)) * da * sqr(C.r) / 2.0;
} double PolyCiclrArea(Circle C, Point *p, int n)//多边形与圆相交面积
{
double ret = 0.0;
Point sol[];
p[n] = p[];
for(int i=;i<n;i++)
{
double t1, t2;
int cnt = getSegCircleIntersection(Line(p[i], p[i+]-p[i]), C, sol);
if (cnt == )
{
if (!InCircle(p[i], C) || !InCircle(p[i+], C)) ret += SegCircleArea(C, p[i], p[i+]);
else ret += Cross(p[i+] - C.c, p[i] - C.c) / 2.0;
}
if (cnt == )
{
if (InCircle(p[i], C) && !InCircle(p[i+], C)) ret += Cross(sol[] - C.c, p[i] - C.c) / 2.0, ret += SegCircleArea(C, sol[], p[i+]);
else ret += SegCircleArea(C, p[i], sol[]), ret += Cross(p[i+] - C.c, sol[] - C.c) / 2.0;
}
if (cnt == )
{
if ((p[i] < p[i + ]) ^ (sol[] < sol[])) swap(sol[], sol[]);
ret += SegCircleArea(C, p[i], sol[]);
ret += Cross(sol[] - C.c, sol[] - C.c) / 2.0;
ret += SegCircleArea(C, sol[], p[i+]);
}
}
return fabs(ret);
}
double PolygonArea(Point *po, int n) {
double area = 0.0;
for(int i = ; i < n-; i++) {
area += Cross(po[i]-po[], po[i+]-po[]);
}
return area * 0.5;
}
Point a[], b;
double p, q;
int main(){
int n, m;
scanf("%d", &n);
for(int i=;i<n;i++) a[i].in();
double ar = fabs(PolygonArea(a, n));
scanf("%d", &m);
for(int i=;i<m;i++){
b.in();
scanf("%lf%lf", &p, &q);
double l = , r = , num = , mid, aa = -p/q;
while(num--){
mid = (l+r)/;
Circle yuan(b, mid);
if(PolyCiclrArea(yuan, a, n)/ar < aa) l = mid;
else r = mid;
}
printf("%.10f\n", mid);
}
return ;
}

牛客网暑期ACM多校训练营(第三场)J 多边形与圆相交的面积的更多相关文章

  1. 牛客网暑期ACM多校训练营(第二场)J farm (二维树状数组)

    题目链接: https://www.nowcoder.com/acm/contest/140/J 思路: 都写在代码注释里了,非常好懂.. for_each函数可以去看一下,遍历起vector数组比较 ...

  2. 牛客网 暑期ACM多校训练营(第二场)A.run-动态规划 or 递推?

    牛客网暑期ACM多校训练营(第二场) 水博客. A.run 题意就是一个人一秒可以走1步或者跑K步,不能连续跑2秒,他从0开始移动,移动到[L,R]的某一点就可以结束.问一共有多少种移动的方式. 个人 ...

  3. 牛客网 暑期ACM多校训练营(第一场)A.Monotonic Matrix-矩阵转化为格子路径的非降路径计数,Lindström-Gessel-Viennot引理-组合数学

    牛客网暑期ACM多校训练营(第一场) A.Monotonic Matrix 这个题就是给你一个n*m的矩阵,往里面填{0,1,2}这三种数,要求是Ai,j⩽Ai+1,j,Ai,j⩽Ai,j+1 ,问你 ...

  4. 2018牛客网暑期ACM多校训练营(第二场)I- car ( 思维)

    2018牛客网暑期ACM多校训练营(第二场)I- car 链接:https://ac.nowcoder.com/acm/contest/140/I来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 ...

  5. 牛客网暑期ACM多校训练营(第一场) - J Different Integers(线段数组or莫队)

    链接:https://www.nowcoder.com/acm/contest/139/J来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语言1048 ...

  6. 牛客网暑期ACM多校训练营(第九场) A题 FWT

    链接:https://www.nowcoder.com/acm/contest/147/A来源:牛客网 Niuniu has recently learned how to use Gaussian ...

  7. 牛客网暑期ACM多校训练营(第九场)D

    链接:https://www.nowcoder.com/acm/contest/147/D来源:牛客网 Niuniu likes traveling. Now he will travel on a ...

  8. 牛客网暑期ACM多校训练营(第二场)B discount

    链接:https://www.nowcoder.com/acm/contest/140/B来源:牛客网 题目描述 White Rabbit wants to buy some drinks from ...

  9. 2018牛客网暑期ACM多校训练营(第一场)D图同构,J

    链接:https://www.nowcoder.com/acm/contest/139/D来源:牛客网 同构图:假设G=(V,E)和G1=(V1,E1)是两个图,如果存在一个双射m:V→V1,使得对所 ...

  10. 牛客网暑期ACM多校训练营(第二场) I Car 思维

    链接:https://www.nowcoder.com/acm/contest/140/I来源:牛客网 White Cloud has a square of n*n from (1,1) to (n ...

随机推荐

  1. Java子类与父类方法的隐藏和覆盖

    class Base{     int x = 1;     static int y = 2;     String name(){         return "mother" ...

  2. Elasticsearch 插入地理索引文档一直为空

    今天在获取插入索引数据的时候,一直提示插入不成功,尝试了很多方法,原来是因为在插入的时候应该先 插入Latitude后插入longitude修改后的代码如下 public boolean insert ...

  3. SQLite-And和OR运算符

    SQLite - AND 和 OR 运算符 SQLite AND . OR运算符用于编译多个条件缩小在一个SQLite声明中选定的数据.这两个操作符被称为连接的操作符. 这些操作符与不同操作提供了一种 ...

  4. liunx 中安装mysql 图形界面 phpmyadmin

    是浏览器图形界面 1. 安装mysql 图形管理工具. 2. 使用phpmyadmin 图像化工具. 3.下载地址  http://www.phpmyadmin.net/ 4. 查看是否安装这两个包 ...

  5. Vue项目结构梳理

    Vue项目结构图: 简单介绍目录结构 build目录是一些webpack的文件,配置参数什么的,一般不用动 config是vue项目的基本配置文件 node_modules是项目中安装的依赖模块 sr ...

  6. 目标检测中bounding box regression

    https://zhuanlan.zhihu.com/p/26938549 RCNN实际包含两个子步骤,一是对上一步的输出向量进行分类(需要根据特征训练分类器):二是通过边界回归(bounding-b ...

  7. jsp公共头信息的抽取(相对路径的修改)

    1,抽取出的公共头信息 <%@ page language="java" contentType="text/html; charset=UTF-8" p ...

  8. 谈谈你对java的理解

    这个题目是考察多个方面 但是要回答出关键点: 1.平台无关性 2.GC 3.语言特性.泛型.反射.lamda 4.面向对象 5.类库 6.异常处理

  9. 【JavaEE-面试总结】(未完,待续···)

    目录: 一.Java基础 二.JavaEE基础 三.JavaEE进阶 四.数据库 五.数据结构&算法 六.高级(服务器) 一.Java基础 1.1 面向对象(封装.继承.多态) 访问权限修饰符 ...

  10. 第三章:systemverilog文本值和数据类型

    1.增强的文本值 2.改进的`define文本替换 3.时间值 4.新的变量类型 5.有符号和无符号类型 6.静态和动态变量(***) 7.类型转换 8.常数 增强的文本值(文本赋值增强) 主要是:位 ...