codevs——1036 商务旅行
某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间。
假设有N个城镇,首都编号为1,商人从首都出发,其他各城镇之间都有道路连接,任意两个城镇之间如果有直连道路,在他们之间行驶需要花费单位时间。该国公路网络发达,从首都出发能到达任意一个城镇,并且公路网络不会存在环。
你的任务是帮助该商人计算一下他的最短旅行时间。
输入文件中的第一行有一个整数N,1<=n<=30 000,为城镇的数目。下面N-1行,每行由两个整数a 和b (1<=a, b<=n; a<>b)组成,表示城镇a和城镇b有公路连接。在第N+1行为一个整数M,下面的M行,每行有该商人需要顺次经过的各城镇编号。
在输出文件中输出该商人旅行的最短时间。
5
1 2
1 5
3 5
4 5
4
1
3
2
5
7
lca裸题
最短距离为每两个相邻的点到lca的距离。
#include<cstdio> #include<cstring> #include<cstdlib> #include<iostream> #include<algorithm> #define N 300000 using namespace std; bool vis[N]; int n,m,x,y,tot,lca,ans; int a[N],fa[N],deep[N],size[N],top[N],head[N]; int read() { ,f=; char ch=getchar(); ; ch=getchar();} +ch-'; ch=getchar();} return x*f; } struct Edge { int from,to,next; }edge[N]; int add(int x,int y) { tot++; edge[tot].to=y; edge[tot].next=head[x]; head[x]=tot; } int dfs(int x) { size[x]=;vis[x]=true; deep[x]=deep[fa[x]]+; for(int i=head[x];i;i=edge[i].next) { int to=edge[i].to; if(fa[x]!=to&&!vis[to]) { fa[to]=x; dfs(to); size[x]+=size[to]; } } } int dfs1(int x) { ; vis[x]=true; if(!top[x]) top[x]=x; for(int i=head[x];i;i=edge[i].next) { int to=edge[i].to; if(fa[x]!=to&&size[to]>size[t]) t=to; } if(t&&!vis[t]) { top[t]=top[x]; dfs1(t); } for(int i=head[x];i;i=edge[i].next) { int to=edge[i].to; if(fa[x]!=to&&to!=t&&!vis[to]) dfs1(to); } } int LCA(int x,int y) { while(top[x]!=top[y]) { if(deep[top[x]]<deep[top[y]]) swap(x,y); x=fa[x]; } if(deep[x]>deep[y]) swap(x,y); return x; } int main() { n=read();a[]=; ;i<n;i++) x=read(),y=read(),add(x,y),add(y,x); dfs();memset(vis,,sizeof(vis)); dfs1();m=read();//a[1]=read(); ;i<=m;i++) { a[i]=read(); lca=LCA(a[i-],a[i]); ans+=deep[a[i-]]+deep[a[i]]-*deep[lca]; //printf("%d %d\n",lca,ans); } printf("%d",ans); ; }
codevs——1036 商务旅行的更多相关文章
- 倍增法-lca codevs 1036 商务旅行
codevs 1036 商务旅行 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 某首都城市的商人要经常到各城镇去做生意 ...
- CodeVs.1036 商务旅行 ( LCA 最近公共祖先 )
CodeVs.1036 商务旅行 ( LCA 最近公共祖先 ) 题意分析 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从 ...
- codevs 1036 商务旅行(Targin求LCA)
传送门 Description 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从首都出发,其他各城镇之间都有道路连接,任意 ...
- CODEVS 1036 商务旅行
题目描述 Description 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从首都出发,其他各城镇之间都有道路连接,任 ...
- codevs 1036 商务旅行 (倍增LCA)
/* 在我还不知道LCA之前 暴力跑的SPFA 70分 三个点TLE */ #include<iostream> #include<cstdio> #include<cs ...
- 【最近公共祖先】【树链剖分】CODEVS 1036 商务旅行
树链剖分求lca模板.O(log(n)),就是不倍增嘛~ #include<cstdio> #include<algorithm> using namespace std; # ...
- 【最近公共祖先】【块状树】CODEVS 1036 商务旅行
在线块状树LCA模板. #include<cstdio> #include<vector> #include<algorithm> #include<cmat ...
- CODEVS——T 1036 商务旅行
http://codevs.cn/problem/1036/ 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Descript ...
- C++之路进阶——codevs1036(商务旅行)
1036 商务旅行 题目描述 Description 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从首都出发,其他各城镇 ...
随机推荐
- tomcat常用的优化和配置
Tomcat 5常用优化和配置 1.JDK内存优化: Tomcat默认可以使用的内存为128MB,Windows下,在文件{tomcat_home}/bin/catalina.bat,Unix下,在文 ...
- POI写入word doc 03 模板的实例
在使用POI写word doc文件的时候我们必须要先有一个doc文件才行,因为我们在写doc文件的时候是通过HWPFDocument来写的,而HWPFDocument是要依附于一个doc文件的.所以通 ...
- NOIP 2017 图书管理员
题目描述 图书馆中每本书都有一个图书编码,可以用于快速检索图书,这个图书编码是一个 正整数. 每位借书的读者手中有一个需求码,这个需求码也是一个正整数.如果一本书的图 书编码恰好以读者的需求码结尾,那 ...
- python面向对象编程(OOP)
python作为一种解释性语言,其主要的编程方式就是面向对象,而且python的框架django也是主要面向对象的编程. 类(class)和对象(object) 类(class)是用来描述具有相同属性 ...
- vue组件从开发到发布
组件化是前端开发非常重要的一部分,从业务中解耦出来,可以提高项目的代码复用率.更重要的是我们还可以打包发布,俗话说集体的力量是伟大的,正因为有许许多多的开源贡献者,才有了现在的世界. 不想造轮子的工程 ...
- Linux文件权限基础(一)
Linux中每个文件或者目录对都有一组共9个基础权限位,没三位字符被分为一组,他们分别是属主权限位,用户组权限位,其他用户权限位. 示例: 权限位说明: r --read 可读权限 对应数字4 w - ...
- 组队赛Day1第一场 GYM 101350A - Sherlock Bones (DP)
[题意] 给你一个01串.f(i,j)定义为区间[i,j]内1的个数,求区间 [i,j,k] 中 f(i,j) =f(j,k) 的情况的子串总数,要求str[j]=='1'. (题意描述引自Ilook ...
- PAT Basic 1049
1049 数列的片段和 给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1 ...
- Knockout v3.4.0 中文版教程-1-入门和安装
英文原版教程:http://knockoutjs.com/documentation/introduction.html 注:此教程根据英文原版翻译,仅作练习,如有不足或错误,请指正 说明: 对原文中 ...
- iOS 开发之多线程之GCD
1.GCD(Grand Centrol Dispath) 并行:宏观以及微观都是两个人再拿着两把铁锹在挖坑,一小时挖两个大坑 并发:宏观上是感觉他们都在挖坑,微观是他们是在使用一把铁锹挖坑,一小时后他 ...