BZOJ_1016_[JSOI2008]_最小生成树计数_(dfs+乘法原理)
描述
http://www.lydsy.com/JudgeOnline/problem.php?id=1016
给出一张图,其中具有相同权值的边的数目不超过10,求最小生成树的个数.
分析
生成树的计数有一个什么什么算法...
我真的企图研究了...但是智商捉急的我实在看不懂论文...
所以最后还是写了暴力...
当然暴力也要靠正确的姿势的.
首先来看一个结论:
同一张图的所有最小生成树中,边权值相同的边的数目是一定的.
也就是说,假如某一张图的某一棵最小生成树由边权值为1,1,2,2,2,3的边组成,那么这张图的所有其他最小生成树也都由六条权值分别为1,1,2,2,2,3的边组成.
至于证明,我们可以用数学归纳法.
1.以上结论对与n=2的情况显然成立.
2.假设对于n=k的情况以上结论成立即k个节点的最小生成树满足相同权值的边的数目一定.那么对于n=k+1的情况,需要加一条边将第k+1个点连起来,因为生成树是最小的,所以所加的边的权值是一定的,而之前的k-1条边(连接之前的k个点的边)各权值的边的数目也是一定的,所以最终各权值的边的数目是一定的.
有了这样的一个结论,又因为相同权值的边的数目不超过10,所以我们就可以利用暴力dfs+乘法原理,统计每一种权值的边的选择的方案数,然后相乘即可.
#include <bits/stdc++.h>
using namespace std; const int maxn=+,maxm=+,mod=;
struct edge{
int u,v,w;
edge(){}
edge(int u,int v,int w):u(u),v(v),w(w){}
bool operator < (const edge &a) const { return w<a.w; }
}g[maxm];
int n,m,cnt,sum,ans=;
int a[maxm],b[maxm],ect[maxm],f[maxn];
inline int read(int &x){x=;int k=;char c;for(c=getchar();c<''||c>'';c=getchar())if(c=='-')k=-;for(;c>=''&&c<='';c=getchar())x=x*+c-'';return x*=k;}
inline int find(int x){return x==f[x]?x:find(f[x]);}
void dfs(int s,int t,int rem){
if(rem==){
sum++;
return;
}
for(int i=s;i-+rem<=t;i++){
int fv=find(g[i].v),fu=find(g[i].u);
if(fu!=fv){
int F=f[fu];
f[fu]=fv;
dfs(i+,t,rem-);
f[fu]=F;
}
}
}
inline void solve(){
int i,j;
for(i=,j=;i<=m&&j<n;i++){
int fu=find(g[i].u),fv=find(g[i].v);
if(fu!=fv){
f[fu]=fv;
ect[b[i]]++;
j++;
}
}
if(j<n){
puts("");
return;
}
for(int i=;i<=n;i++) f[i]=i;
for(i=;i<=cnt;i++){
sum=;
dfs(a[i],a[i+]-,ect[i]);
for(int j=a[i];j<a[i+];j++){
int fu=find(g[j].u),fv=find(g[j].v);
if(fu!=fv) f[fu]=fv;
}
ans=(ans*sum)%mod;
}
printf("%d\n",ans);
}
inline void init(){
read(n); read(m);
for(int i=;i<=n;i++) f[i]=i;
for(int i=,u,v,w;i<=m;i++){
read(u); read(v); read(w);
g[i]=edge(u,v,w);
}
sort(g+,g++m);
for(int i=;i<=m;i++){
if(g[i].w!=g[i-].w) a[++cnt]=i;
b[i]=cnt;
}
a[cnt+]=m+;
}
int main(){
init();
solve();
return ;
}
1016: [JSOI2008]最小生成树计数
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 4666 Solved: 1890
[Submit][Status][Discuss]
Description
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。
Input
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。
Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
Sample Output
HINT
Source
BZOJ_1016_[JSOI2008]_最小生成树计数_(dfs+乘法原理)的更多相关文章
- BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )
不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等 就是说如果一种方案中权值为1的边有n条 ...
- 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)
1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...
- 【BZOJ】【1016】【JSOI2008】最小生成树计数
Kruskal/并查集+枚举 唉我还是too naive,orz Hzwer 一开始我是想:最小生成树删掉一条边,再加上一条边仍是最小生成树,那么这两条边权值必须相等,但我也可以去掉两条权值为1和3的 ...
- [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】
题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...
- bzoj 1016: [JSOI2008]最小生成树计数【dfs+克鲁斯卡尔】
有一个性质就是组成最小生成树总边权值的若干边权总是相等的 这意味着按边权排序后在权值相同的一段区间内的边能被选入最小生成树的条数是固定的 所以先随便求一个最小生成树,把每段的入选边数记录下来 然后对于 ...
- BZOJ 1016 【JSOI2008】 最小生成树计数
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- 【BZOJ1016】【JSOI2008】最小生成树计数
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- BZOJ_1833_[ZJOI2010]_数字计数_(数位dp)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1833 统计\(a~b\)中数字\(0,1,2,...,9\)分别出现了多少次. 分析 数位dp ...
随机推荐
- SSH连接时出现「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」解决办法
用ssh來操控github,沒想到連線時,出現「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」,後面還有一大串英文,這時當然要向Google大神求助 ...
- bzoj1016:[JSOI2008]最小生成树计数
思路:模拟kruskal的过程,可以发现对于所有权值相同的边,有很多种选择的方案,而且权值不同的边并不会相互影响,因为先考虑权值较小的边,权值比当前权值大的边显然不在考虑范围之内,而权值比当前权值小的 ...
- Java大数操作类
Java的大数操作分为BigInteger和BigDecimal,但这两给类是分开使用的,有时候在编程的时候显得略微繁琐,现在编写了一个将二者合二为一的大数操作类. 大数操作类代码如下: packag ...
- MFC通过ADO操作Access数据库
我在<VC知识库在线杂志>第十四期和第十五期上曾发表了两篇文章——“直接通过ODBC读.写Excel表格文件”和“直接通过DAO读.写Access文件”,先后给大家介绍了ODBC和DAO两 ...
- UniqueID,页面子控件唯一标示
aspx: <form id="form1" runat="server"> <asp :Repeater ID="MyDa ...
- Linux启用MySQL的InnoDB引擎
前几天公司的一个项目组的同事反应说公司内部的一台Linux服务器上的MySQL没有InnoDB这个引擎,我当时想应该不可能啊,MySQL默认应该 就已经安装了这个引擎的吧,于是上服务器去看了看,发现还 ...
- poj 1733 Parity game
Parity game 题意:一个长度为N(N < 1e9)内的01串,之后有K(K <= 5000)组叙述,表示区间[l,r]之间1的个数为odd还是even:问在第一个叙述矛盾前说了几 ...
- mysql UNIX时间戳与日期的相互转换 查询表信息
UNIX时间戳转换为日期用函数FROM_UNIXTIME() select FROM_UNIXTIME(1156219870); 日期转换为UNIX时间戳用函数UNIX_TIMESTAMP() Sel ...
- com.mchange.v2.c3p0.ComboPooledDataSource
C3P0是一个开放源代码的JDBC连接池,它在lib目录中与Hibernate一起发布,包括了实现jdbc3和jdbc2扩展规范说明的Connection 和Statement 池的DataSourc ...
- 一步步学习NHibernate(8)——HQL查询(2)
请注明转载地址:http://www.cnblogs.com/arhat 在上一章中,老魏带着大家学习了HQL语句,发现HQL语句还是非常不错的,尤其是在懒加载的时候,书写起来比较的舒服,但是这里老魏 ...