The chi squared distance d(x,y) is, as you already know, a distance between two histograms x=[x_1,..,x_n] and y=[y_1,...,y_n] having n bins both. Moreover, both histograms are normalized, i.e. their entries sum up to one.
The distance measure d is usually defined (although alternative definitions exist) as d(x,y) = sum( (xi-yi)^2 / (xi+yi) ) / 2 . It is often used in computer vision to compute distances between some bag-of-visual-word representations of images.

The name of the distance is derived from Pearson's chi squared test statistic X²(x,y) = sum( (xi-yi)^2 / xi) for comparing discrete probability distributions (i.e histograms). However, unlike the test statistic, d(x,y) is symmetric wrt. x and y, which is often useful in practice, e.g., when you want to construct a kernel out of the histogram distances.

Chi-Square Distance

Consider a frequency table with n rows and p columns, it is possible to calculate row profiles and column profiles. Let us then plot the n or p points from each profile. We can define the distances between these points. The Euclidean distance between the components of the profiles, on which a weighting is defined (each term has a weight that is the inverse of its frequency), is called the chi-square distance. The name of the distance is derived from the fact that the mathematical expression defining the distance is identical to that encountered in the elaboration of the chi square goodness of fit test.

MATHEMATICAL ASPECTS

Let (fij), be the frequency of the ith row and jth column in a frequency table with n rows an p columns. The chi-square distance between two rows i and i is given by the formula:

where

i. is the sum of the components of the ith row;
.j is the sum of the components of the jth column;
is the ith row profile for j = 1,2,...,p.
Likewise, the distance between two columns j and j is given by:

where  is the jth column profile for j = 1,...,n.

DOMAINS AND LIMITATIONS

The chi-square distance incorporates a weight that is inversely proportional to the total of each row (or column), which increases the importance of small deviations in the rows (or columns) which have a small sum with respect to those with more important sum package.

The chi-square distance has the property of distributional equivalence, meaning that it ensures that the distances between rows and columns are invariant when two columns (or two rows) with identical profiles are aggregated.

EXAMPLES

Consider a contingency table charting how satisfied employees working for three different businesses are. Let us establish a distance table using the chi-square distance.

Values for the studied variable X can fall into one of three categories:

  • 1: high satisfaction;
  • 2: medium satisfaction;
  • 3: low satisfaction.

The observations collected from samples of individuals from the three businesses are given below:

 

Business 1

Business 2

Business 3

Total

1

20

 55

30

105

2

18

 40

15

 73

3

12

  5

 5

 22

Total

50

100

50

200

The relative frequency table is obtained by dividing all of the elements of the table by 200, the total number of observations:

 

Business 1

Business 2

Business 3

Total

1

0.1

0.275

0.15

0.525

2

0.09

0.2

0.075

0.365

3

0.06

0.025

0.025

0.11

Total

0.25

0.5

0.25

1

We can calculate the difference in employee satisfaction between the the 3 enterprises. The column profile matrix is given below:

 

Business 1

Business 2

Business 3

Total

1

0.4 

0.55

0.6

1.55

2

0.36

0.4 

0.3

1.06

3

0.24

0.05

0.1

0.39

Total

1  

1  

1 

3  

This allows us to calculate the distances between the different columns:

We can calculate d(1,3) and d(2,3) in a similar way. The distances obtained are summarized in the following distance table:

 

Business 1

Business 2

Business 3

Business 1

0

0.613

0.514

Business 2

0.613

0

0.234

Business 3

0.514

0.234

0

We can also calculate the distances between the rows, in other words the difference in employee satisfaction; to do this we need the line profile table:

 

Business 1

Business 2

Business 3

Total

1

0.19 

0.524

0.286

1

2

0.246

0.548

0.206

1

3

0.546

0.227

0.227

1

Total

0.982

1.299

0.719

3

This allows us to calculate the distances between the different rows:

We can calculate d(1,3) and d(2,3) in a similar way. The differences between the degrees of employee satisfaction are finally summarized in the following distance table:

 

1

2

3

1

0

0.198

0.835

2

0.198

0

0.754

3

0.835

0.754

0

http://www.researchgate.net/post/What_is_chi-squared_distance_I_need_help_with_the_source_code

http://www.springerreference.com/docs/html/chapterdbid/60817.html

Chi Square Distance的更多相关文章

  1. BestCoder Round #87 1002 Square Distance[DP 打印方案]

    Square Distance  Accepts: 73  Submissions: 598  Time Limit: 4000/2000 MS (Java/Others)  Memory Limit ...

  2. HDU 5903 Square Distance (贪心+DP)

    题意:一个字符串被称为square当且仅当它可以由两个相同的串连接而成. 例如, "abab", "aa"是square, 而"aaa", ...

  3. hdu 5903 Square Distance(dp)

    Problem Description A string is called a square string if it can be obtained by concatenating two co ...

  4. [HDU5903]Square Distance(DP)

    题意:给一个字符串t ,求与这个序列刚好有m个位置字符不同的由两个相同的串拼接起来的字符串 s,要求字典序最小的答案. 分析:按照贪心的想法,肯定在前面让字母尽量小,尽可能的填a,但问题是不知道前面填 ...

  5. BendFord's law's Chi square test

    http://www.siam.org/students/siuro/vol1issue1/S01009.pdf bendford'law e=log10(1+l/n) o=freq of first ...

  6. HDU 5903 - Square Distance [ DP ] ( BestCoder Round #87 1002 )

    题意: 给一个字符串t ,求与这个序列刚好有m个位置字符不同的由两个相同的串拼接起来的字符串 s, 要求字典序最小的答案    分析: 把字符串折半,分成0 - n/2-1 和 n/2 - n-1 d ...

  7. HDU 5903 Square Distance

    $dp$预处理,贪心. 因为$t$串前半部分和后半部分是一样的,所以只要构造前一半就可以了. 因为要求字典序最小,所以肯定是从第一位开始贪心选择,$a,b,c,d,...z$,一个一个尝试过去,如果发 ...

  8. 生成式模型之 GAN

    生成对抗网络(Generative Adversarial Networks,GANs),由2014年还在蒙特利尔读博士的Ian Goodfellow引入深度学习领域.2016年,GANs热潮席卷AI ...

  9. Scoring and Modeling—— Underwriting and Loan Approval Process

    https://www.fdic.gov/regulations/examinations/credit_card/ch8.html Types of Scoring FICO Scores    V ...

随机推荐

  1. Storm系列(二)系统结构及重要概念

    在Storm的集群里面有两种节点:控制节点和工作节点,控制节点上面运行Nimbus进程,Nimbus负责在集群里面分配计算任务,并且监控状态.每一个工作节点上面运行Supervisor进程,Super ...

  2. algorithm@ dijkstra algorithm & prim algorithm

    #include<iostream> #include<cstdio> #include<cstring> #include<limits> #incl ...

  3. HDU4763 - Theme Section(KMP)

    题目描述 给定一个字符串S,要求你找到一个最长的子串,它既是S的前缀,也是S的后缀,并且在S的内部也出现过(非端点) 题解 CF原题不解释....http://codeforces.com/probl ...

  4. hdoj 1406 完数

    完数 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submissi ...

  5. mysql字符串分割函数(行转列)

    由于工作需要需要处理一些以逗号分隔的字符串,每次都要现做很是麻烦,网上找了很多都没有现成的,好吧,自己动手写一个好了 )) ) BEGIN /*函数功能: 把带逗号的字符串分割取出 参数: num 要 ...

  6. C链表反转(时间复杂度O(n))

    面试的时候经常会出现的问题,现在都做一遍,回忆一下,练练手. 这个题目需要注意两点: 1.head->next 要先设置为NULL ,否则反转后,它还是指向之前的next节点 2.需要有一个tm ...

  7. IOS tableView 自定义cell 多行时 文字重复现象

    今天写了一个demo,有一个问题,有很多cell,但是超过一页后往下翻,发现文字有重叠现象, cell用的是重用机制,按说不会这样,最终解决的方案: 勾选这个,clears graphics cont ...

  8. 收集内存信息(总量、可用、已用、百分比)导出到csv

    #############################脚本功能及说明##################################################该脚本用来在各台ERP服务器 ...

  9. springMVC项目引入jstl标签库若干问题的总结

    中午,不知道动到项目的哪个地方了,之前在联系人列表页面用的好好的jstl标签库突然报错了:<%@taglib prefix="c" uri="http://java ...

  10. jAVA HDU1001题

    import java.util.Scanner;public class Main { public static void main(String args[]) { Scanner cin=ne ...