In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws. 

Input

Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated.

When n=0,the input is terminated.

There will be no illegal input and there are no zero-length straws.

Output

You should generate a line of output for each line containing a pair a and b, except the final line where a = 0 = b. The line should say simply "CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself. 

Sample Input

7
1 6 3 3
4 6 4 9
4 5 6 7
1 4 3 5
3 5 5 5
5 2 6 3
5 4 7 2
1 4
1 6
3 3
6 7
2 3
1 3
0 0 2
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 0 0

Sample Output

CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
CONNECTED
CONNECTED

题目大意:按顺序输入n个线段的两个坐标,然后多组输入判断两个线段是否是连接的(相交即为连接)。

题解:利用计算几何的知识,建立线段,如果有线段相交,就用并查集把它们连在一起,然后判断根节点是不是一个就好啦。比较简单的模板题目。

题意题解都来自谭总。代码还好要自己摸的

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<stack>
#include<map>
#include<cstdlib>
#include<vector>
#include<string>
#include<queue>
using namespace std; #define ll long long
#define llu unsigned long long
#define INF 0x3f3f3f3f
const double PI = acos(-1.0);
const int maxn = 1e3+;
const int mod = 1e9+; struct node{
double x,y;
};
struct Line{
node a;
node b;
}line[];
int father[];
void init()
{
for(int i=;i<;i++)
father[i] = i;
}
double cross(node a,node b,node o)
{
return (a.x-o.x)*(b.y-o.y) - (b.x-o.x)*(a.y-o.y);
}
bool connect(Line u,Line v)
{
return (cross(v.a,u.b,u.a) * cross(u.b,v.b,u.a) >= ) &&
(cross(u.a,v.b,v.a) * cross(v.b,u.b,v.a) >= ) &&
(max(u.a.x,u.b.x) >= min(v.a.x,v.b.x)) &&
(max(v.a.x,v.b.x) >= min(u.a.x,u.b.x)) &&
(max(u.a.y,u.b.y) >= min(v.a.y,v.b.y)) &&
(max(v.a.y,v.b.y) >= min(u.a.y,u.b.y));
}
int find(int x)
{
return x == father[x] ? x : father[x] = find(father[x]);
}
void combine(int x,int y)
{
x = find(x);
y = find(y);
if(x != y)
father[x] = y;
}
int main()
{
int n;
while(scanf("%d",&n) && n)
{
init();
for(int i=;i<=n;i++)
scanf("%lf %lf %lf %lf",&line[i].a.x,&line[i].a.y,&line[i].b.x,&line[i].b.y);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(connect(line[i],line[j]))
combine(i,j);
int a,b;
while(scanf("%d %d",&a,&b) && a+b)
{
if(find(a) == find(b))
puts("CONNECTED");
else
puts("NOT CONNECTED");
}
}
}

Jack Straws POJ - 1127 (简单几何计算 + 并查集)的更多相关文章

  1. Jack Straws POJ - 1127 (几何计算)

    Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5428   Accepted: 2461 Descr ...

  2. Jack Straws(POJ 1127)

    原题如下: Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5555   Accepted: 2536 ...

  3. poj 1127:Jack Straws(判断两线段相交 + 并查集)

    Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2911   Accepted: 1322 Descr ...

  4. poj 1127(直线相交+并查集)

    Jack Straws Description In the game of Jack Straws, a number of plastic or wooden "straws" ...

  5. Jack Straws(判断线段是否相交 + 并查集)

    /** http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=1840    题意:    判断线段 ...

  6. poj 2236:Wireless Network(并查集,提高题)

    Wireless Network Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 16065   Accepted: 677 ...

  7. LA3027简单带权并查集

    题意:       有n个点,一开始大家都是独立的点,然后给出一些关系,a,b表示a是b的父亲节点,距离是abs(a-b)%1000,然后有一些询问,每次询问一个节点a到父亲节点的距离是多少? 思路: ...

  8. POJ 1611 The Suspects(并查集,简单)

    为什么ACM的题意都这么难懂,就不能说的直白点吗?还能不能好好的一起刷题了? 题意:你需要建一个n的并查集,有m个集合,最后要输出包含0的那个集合的元素的个数. 这是简单并查集应用,所以直接看代码吧! ...

  9. poj 2492 a bug's life 简单带权并查集

    题意大致为找同性恋的虫子.... 这个比食物链要简单些.思路完全一致,利用取余操作实现关系之间的递推. 个人感觉利用向量,模和投影可能可以实现具有更加复杂关系的并查集. #include<ios ...

随机推荐

  1. xenserver 更新源

    在xenserver上安装vnc软件时,报错 [root@cloud yum-3.4.3]# ./yummain.py install yumThere are no enabled repos.Ru ...

  2. SQL 分页实现

    --通用分页 ALTER PROCEDURE [dbo].[Sys_Pagination_1] @tblName VARCHAR(2000) , -- 表名 @strGetFields VARCHAR ...

  3. oop典型应用:实体类

    1. 要知道这个图三者的关系 2.实体类属性类型与数据库类型 3.readonly与const的对比 两者的区别如下: ①const能修饰类中的字段(field)或者局部变量(local variab ...

  4. mui蒙版使用例子

    <!DOCTYPE html><html><head> <meta charset="utf-8"> <meta name=& ...

  5. Linux文件的三个时间属性(Atime,Mtime,Ctime)

    Linux下,一个文件有三种时间,分别是: 访问时间:atime 修改时间:mtime 状态时间:ctime 访问时间:对文件进行一次读操作,它的访问时间就会改变.例如像:cat.more等操作,但是 ...

  6. Oracle数据库基础--SQL查询经典例题

    Oracle基础练习题,采用Oracle数据库自带的表,适合初学者,其中包括了一些简单的查询,已经具有Oracle自身特点的单行函数的应用 本文使用的实例表结构与表的数据如下: emp员工表结构如下: ...

  7. linux 后渗透测试

    学习参考: http://weibo.com/1869235073/B9Seswf9R?type=comment http://weibo.com/p/1001603723521007220513 h ...

  8. map 容器(copy)

    Map是c++的一个标准容器,她提供了很好一对一的关系,在一些程序中建立一个map可以起到事半功倍的效果,总结了一些map基本简单实用的操作!1. map最基本的构造函数:   map<stri ...

  9. iOS 7系列译文:认识 TextKit

    OS 7:终于来了,TextKit.   功能   所以咱们到了.iOS7 带着 TextKit 登陆了.咱们看看它可以做什么!深入之前,我还想提一下,严格来说,这些事情中的大部分以前都可以做.如果你 ...

  10. codeforce Gym 100425E The Street Escalator(期望,线性递推)

    算数学期望,每个人都可以分开来考虑.Xi表示第i个人跑到另外一边的次数. Xi服从二项分布.概率的和是个二项式,(p+1-p)^T,把二项式展开,p的偶次项是留在原来那一边的概率. 可以用((a+b) ...