In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws. 

Input

Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated.

When n=0,the input is terminated.

There will be no illegal input and there are no zero-length straws.

Output

You should generate a line of output for each line containing a pair a and b, except the final line where a = 0 = b. The line should say simply "CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself. 

Sample Input

7
1 6 3 3
4 6 4 9
4 5 6 7
1 4 3 5
3 5 5 5
5 2 6 3
5 4 7 2
1 4
1 6
3 3
6 7
2 3
1 3
0 0 2
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 0 0

Sample Output

CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
CONNECTED
CONNECTED

题目大意:按顺序输入n个线段的两个坐标,然后多组输入判断两个线段是否是连接的(相交即为连接)。

题解:利用计算几何的知识,建立线段,如果有线段相交,就用并查集把它们连在一起,然后判断根节点是不是一个就好啦。比较简单的模板题目。

题意题解都来自谭总。代码还好要自己摸的

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<stack>
#include<map>
#include<cstdlib>
#include<vector>
#include<string>
#include<queue>
using namespace std; #define ll long long
#define llu unsigned long long
#define INF 0x3f3f3f3f
const double PI = acos(-1.0);
const int maxn = 1e3+;
const int mod = 1e9+; struct node{
double x,y;
};
struct Line{
node a;
node b;
}line[];
int father[];
void init()
{
for(int i=;i<;i++)
father[i] = i;
}
double cross(node a,node b,node o)
{
return (a.x-o.x)*(b.y-o.y) - (b.x-o.x)*(a.y-o.y);
}
bool connect(Line u,Line v)
{
return (cross(v.a,u.b,u.a) * cross(u.b,v.b,u.a) >= ) &&
(cross(u.a,v.b,v.a) * cross(v.b,u.b,v.a) >= ) &&
(max(u.a.x,u.b.x) >= min(v.a.x,v.b.x)) &&
(max(v.a.x,v.b.x) >= min(u.a.x,u.b.x)) &&
(max(u.a.y,u.b.y) >= min(v.a.y,v.b.y)) &&
(max(v.a.y,v.b.y) >= min(u.a.y,u.b.y));
}
int find(int x)
{
return x == father[x] ? x : father[x] = find(father[x]);
}
void combine(int x,int y)
{
x = find(x);
y = find(y);
if(x != y)
father[x] = y;
}
int main()
{
int n;
while(scanf("%d",&n) && n)
{
init();
for(int i=;i<=n;i++)
scanf("%lf %lf %lf %lf",&line[i].a.x,&line[i].a.y,&line[i].b.x,&line[i].b.y);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(connect(line[i],line[j]))
combine(i,j);
int a,b;
while(scanf("%d %d",&a,&b) && a+b)
{
if(find(a) == find(b))
puts("CONNECTED");
else
puts("NOT CONNECTED");
}
}
}

Jack Straws POJ - 1127 (简单几何计算 + 并查集)的更多相关文章

  1. Jack Straws POJ - 1127 (几何计算)

    Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5428   Accepted: 2461 Descr ...

  2. Jack Straws(POJ 1127)

    原题如下: Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5555   Accepted: 2536 ...

  3. poj 1127:Jack Straws(判断两线段相交 + 并查集)

    Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2911   Accepted: 1322 Descr ...

  4. poj 1127(直线相交+并查集)

    Jack Straws Description In the game of Jack Straws, a number of plastic or wooden "straws" ...

  5. Jack Straws(判断线段是否相交 + 并查集)

    /** http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=1840    题意:    判断线段 ...

  6. poj 2236:Wireless Network(并查集,提高题)

    Wireless Network Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 16065   Accepted: 677 ...

  7. LA3027简单带权并查集

    题意:       有n个点,一开始大家都是独立的点,然后给出一些关系,a,b表示a是b的父亲节点,距离是abs(a-b)%1000,然后有一些询问,每次询问一个节点a到父亲节点的距离是多少? 思路: ...

  8. POJ 1611 The Suspects(并查集,简单)

    为什么ACM的题意都这么难懂,就不能说的直白点吗?还能不能好好的一起刷题了? 题意:你需要建一个n的并查集,有m个集合,最后要输出包含0的那个集合的元素的个数. 这是简单并查集应用,所以直接看代码吧! ...

  9. poj 2492 a bug's life 简单带权并查集

    题意大致为找同性恋的虫子.... 这个比食物链要简单些.思路完全一致,利用取余操作实现关系之间的递推. 个人感觉利用向量,模和投影可能可以实现具有更加复杂关系的并查集. #include<ios ...

随机推荐

  1. pat1056. Mice and Rice (25)

    1056. Mice and Rice (25) 时间限制 30 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Mice and ...

  2. Aura Component Skills & Tools

    本篇参考: https://trailhead.salesforce.com/content/learn/modules/lex_dev_lc_vf_fundamentals 不知不觉已经做了三年多的 ...

  3. CentOS yum安装mcrypt

    CentOS yum安装mcrypt   本篇排错的前提是只想用yum安装,不想使用源码包编译安装. php依赖一下包:   #yum install libmcrypt libmcrypt-deve ...

  4. window.open 打开Excel或者Word 无权限问题

    场景:后端C# ashx 前端:js js在对ashx返回结果进行window.open(url)  url为后端保存excel的一个地址 提示:无操作权限 url:为后端处理后,服务器上一个完整的路 ...

  5. vue 导出excel

    1.安装三个依赖包 npm install -S file-saver npm install -S xlsx npm install -D script-loader 2.在项目中创建一个文件夹(比 ...

  6. 【练习笔记】spring 配置Schedule

    spring项目一些简单的定时任务可以通过@Schedule注解来实现,具体配置如下 在applicationContext.xml文件中增加配置 1.引入task约束 xmlns:task=&quo ...

  7. juypter-notebook安装配置

    juypter-notebook安装配置 Table of Contents 1. jupyter notebook概述 2. jupyter notebook安装 3. 在jupyter noteb ...

  8. yum 安装Tomcat7(centos)

    yum 安装Tomcat7   其实最重要的就是yum源吗.初始源的里面既没有nginx也没有tomcat7. 1,搞定nginx,她家自己有源的: rpm -ivh http://nginx.org ...

  9. Java 中 Double 相关问题

    在项目当中,对于double类型数据的使用比较频繁.尤其是处理金钱相关的数据,在使用Double类型的数据时,涉及到精度,显示,四舍五入等等问题. 1.  显示问题,当double 数据 小于 0.0 ...

  10. IDA逆向:数组的逆向

    阅读<IDA Pro权威指南>第八章,整理的一些笔记,作为逆向的基础,可能有很多认识不足. //全局分配数组 *************************************** ...