[BZOJ4899]:记忆的轮廓(概率DP)
题目传送门
题目描述
输入格式
输出格式
样例
3 7 2
1 4
2 5
3 6
3 7
数据范围与提示
题解
设f[i]表示正确节点i走到n的期望步数,显然f[n]=0,我们倒着递推。
$ f[i]=1+ \frac{1}{d[i]} ×f[i+1]+ \frac{1}{d[i]}× \sum g[j]+f[i] $[j是i的错误儿子]
引用:移项得f[i]=d[i]+f[i+1]+s[i]
引用:复杂度线性。
首先我们需要预处理一个a[i,j],表示存档点为i,从i开始走到正确节点j的期望步数(中间不能存档)。
显然有边界条件a[i,i]=0。对于i<j,可以列出递推式:
a[i,j]=a[i,j-1]+1+1/d[j-1]*∑{g[k]+a[i,j]}[k是j-1的错误儿子]
引用:移项得a[i,j]=a[i,j-1]*d[j-1]+d[j-1]+s[j-1]
引用:可以用n^2的时间预处理a,然后做dp就很好转移了。
枚举下一次的存档点k,那么f[i,j]可以由f[k,j-1]+a[i,k]转移而来。
引用:复杂度O(n2p)
我们来估计答案的上界。考虑一种可行方案,每n/p个正确节点就设立一次存档位置,那么答案最大是多少呢?考虑最坏情况,观察a的转移,应该每变 换一次存档点,大约需要3(n/p)*s[i]+3(n/p-1)*s[i+1]+3(n/p-2)*s[i+2]+……
引用:因为最多m个节点,s的上限是1500(实际上也远远达不到),把所有s都视为这个上限,提取公因数,计算一下那个等比数列求和,由于p是有下界的, 因此n/p有上界14,发现最后也就是个12位数的样子,那么我们估计出答案最大也不会超过这个,可以放心做了。而至于a会爆炸的问题,double是可以 存很多位的,而且太大的a肯定不可能被用上。
那么其实,针对答案不会特别大,a的增长又很恐怖,我们还可以思考对70%的算法优化。那就是设定一个常数step,每次转移最多从距当前step步远的 位置转移过来。step取40多基本不会有问题了,因为a的下界已经是2^40了,而答案的上界远远没有达到,经过精确计算还可以再把step调小一点。
引用:复杂度O(np log ans)
代码时刻
#include<bits/stdc++.h>
using namespace std;
struct rec
{
int nxt;
int to;
}e[5000];
int head[5000],cnt;
int n,m,p;
double g[5000],s[5000],dp[5000];
bool vis[5000];
int du[5000];
void pre_work()//多测不清空,爆零两行泪……
{
memset(head,0,sizeof(head));
memset(dp,0,sizeof(dp));
memset(g,0,sizeof(g));
memset(s,0,sizeof(s));
memset(du,0,sizeof(du));
cnt=0;
}
void add(int x,int y)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
head[x]=cnt;
}
void dfsgetG(int x)//计算g数组
{
vis[x]=1;
g[x]=1;
for(int i=head[x];i;i=e[i].nxt)
{
dfsgetG(e[i].to);
g[x]+=g[e[i].to]*1.0/(double)du[x];
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
pre_work();
scanf("%d%d%d",&n,&m,&p);
for(int i=1;i<=n-1;i++)du[i]=1;//1-(n-1)中,每一个节点都要加上它到下一个正确节点的边
for(int i=n+1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
du[a]++;
add(a,b);
}
for(int i=n+1;i<=m;i++)
{
if(vis[i])continue;
dfsgetG(i);
}
for(int i=1;i<=n;i++)
for(int j=head[i];j;j=e[j].nxt)
s[i]+=g[e[j].to];//计算s数组
for(int i=n-1;i;i--)//倒推计算答案
dp[i]=dp[i+1]+du[i]+s[i];
cout<<fixed<<setprecision(4)<<dp[1]<<endl;//保留小数输出
}
return 0;
}
70%代码:
#include<bits/stdc++.h>
using namespace std;
struct rec
{
int nxt;
int to;
}e[2000];
int head[2000],cnt;
int n,m,p;
double g[2000],s[2000],dp[2000][2000],Map[2000][2000];
bool vis[2000];
int du[2000];
void pre_work()
{
for(int i=0;i<=1;i++)e[i].nxt=e[i].to=0;
memset(head,0,sizeof(head));
memset(dp,127,sizeof(dp));
memset(g,0,sizeof(g));
memset(s,0,sizeof(s));
memset(du,0,sizeof(du));
memset(Map,0,sizeof(Map));
memset(vis,0,sizeof(vis));
cnt=0;
}
void add(int x,int y)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
head[x]=cnt;
}
void dfsgetG(int x)
{
vis[x]=1;
g[x]=1;
for(int i=head[x];i;i=e[i].nxt)
{
dfsgetG(e[i].to);
g[x]+=g[e[i].to]*1.0/(double)du[x];
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
pre_work();
scanf("%d%d%d",&n,&m,&p);
for(int i=1;i<=n-1;i++)du[i]=1;
for(int i=n+1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
du[a]++;
add(a,b);
}
for(int i=n+1;i<=m;i++)
{
if(vis[i])continue;
dfsgetG(i);
}
for(int i=1;i<=n;i++)
for(int j=head[i];j;j=e[j].nxt)
s[i]+=g[e[j].to];
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
Map[i][j]=(Map[i][j-1]+1)*(double)du[j-1]+s[j-1];//计算a数组
dp[n][1]=0;//dp初始
for(int j=2;j<=p;j++)
for(int i=1;i<=n;i++)
for(int k=i+1;k<=n;k++)
dp[i][j]=min(dp[i][j],dp[k][j-1]+Map[i][k]);
cout<<fixed<<setprecision(4)<<dp[1][p]<<endl;
}
return 0;
}
100%算法:
#include<bits/stdc++.h>
using namespace std;
struct rec
{
int nxt;
int to;
}e[2000];
int head[2000],cnt;
int n,m,p;
double g[2000],s[2000],dp[2000][2000],Map[2000][2000];
bool vis[2000];
int du[2000];
void pre_work()
{
for(int i=0;i<=1;i++)e[i].nxt=e[i].to=0;
memset(head,0,sizeof(head));
memset(dp,127,sizeof(dp));
memset(g,0,sizeof(g));
memset(s,0,sizeof(s));
memset(du,0,sizeof(du));
memset(Map,0,sizeof(Map));
memset(vis,0,sizeof(vis));
cnt=0;
}
void add(int x,int y)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
head[x]=cnt;
}
void dfsgetG(int x)
{
vis[x]=1;
g[x]=1;
for(int i=head[x];i;i=e[i].nxt)
{
dfsgetG(e[i].to);
g[x]+=g[e[i].to]*1.0/(double)du[x];
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
pre_work();
scanf("%d%d%d",&n,&m,&p);
for(int i=1;i<=n-1;i++)du[i]=1;
for(int i=n+1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
du[a]++;
add(a,b);
}
for(int i=n+1;i<=m;i++)
{
if(vis[i])continue;
dfsgetG(i);
}
for(int i=1;i<=n;i++)
for(int j=head[i];j;j=e[j].nxt)
s[i]+=g[e[j].to];
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
Map[i][j]=(Map[i][j-1]+1)*(double)du[j-1]+s[j-1];
dp[n][1]=0;
for(int j=2;j<=p;j++)
for(int i=1;i<=n;i++)
for(int k=i+1;k<=min(n,i+12);k++)//优化上界
dp[i][j]=min(dp[i][j],dp[k][j-1]+Map[i][k]);
cout<<fixed<<setprecision(4)<<dp[1][p]<<endl;
}
return 0;
}
rp++
[BZOJ4899]:记忆的轮廓(概率DP)的更多相关文章
- [bzoj4899]记忆的轮廓 题解(毒瘤概率dp)
题目背景 四次死亡轮回后,昴终于到达了贤者之塔,当代贤者夏乌拉一见到昴就上前抱住了昴“师傅!你终于回来了!你有着和师傅一样的魔女的余香,肯定是师傅”.众所周知,大贤者是嫉妒魔女沙提拉的老公,400年前 ...
- Bzoj4899 记忆的轮廓
B. 记忆的轮廓 题目描述 通往贤者之塔的路上,有许多的危机.我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增,在[1,n]中,一共有n个节点.我 ...
- BZOJ4899: 记忆的轮廓【概率期望DP】【决策单调性优化DP】
Description 通往贤者之塔的路上,有许多的危机. 我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增, 在[1,n]中,一共有n个节点.我 ...
- BZOJ4899 记忆的轮廓(概率期望+动态规划+决策单调性)
容易发现跟树没什么关系,可以预处理出每个点若走向分叉点期望走多少步才能回到上个存档点,就变为链上问题了.考虑dp,显然有f[i][j]表示在i~n中设置了j个存档点,其中i设置存档点的最优期望步数.转 ...
- BZOJ4832: [Lydsy1704月赛]抵制克苏恩 (记忆化搜索 + 概率DP)
题意:模拟克苏恩打奴隶战对对方英雄所造成的伤害 题解:因为昨(今)天才写过记忆化搜索 所以这个就是送经验了 1A还冲了个榜 但是我惊奇的发现我数组明明就比数据范围开小了啊??? #include &l ...
- zoj 3640 Help Me Escape 概率DP
记忆化搜索+概率DP 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...
- bzoj 4899 记忆的轮廓 题解(概率dp+决策单调性优化)
题目背景 四次死亡轮回后,昴终于到达了贤者之塔,当代贤者夏乌拉一见到昴就上前抱住了昴“师傅!你终于回来了!你有着和师傅一样的魔女的余香,肯定是师傅”.众所周知,大贤者是嫉妒魔女沙提拉的老公,400年前 ...
- 记忆的轮廓 期望 四边形不等式dp|题解
记忆的轮廓 题目描述 通往贤者之塔的路上,有许多的危机.我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增,在[1,n]中,一共有n个节点.我们把编 ...
- HDU 5001 概率DP || 记忆化搜索
2014 ACM/ICPC Asia Regional Anshan Online 给N个点,M条边组成的图,每一步能够从一个点走到相邻任一点,概率同样,问D步后没走到过每一个点的概率 概率DP 測 ...
随机推荐
- Linux下新建一个站点
Apache+nagix使用Lnmpa创建一个新的站点 我们在部署服务器的时候通常会遇到需要分域名和分应用部署,那么如何通过Apache+nagix创建一个新的站点服务呢 LNMPA这种架构有什么优势 ...
- MYSQL5.7版本解决sql_mode=only_full_group_by问题
在安装有些二开框架时会遇到下面的问题,在填写完数据库密码之后他会提示你请在mysql配置文件中修改ql-mode去掉ONLY_FULL_GROUP_BY,但是我们去mysql的配置文件中查找此配置,有 ...
- MFC——ComBox用法大全
Combo Box (组合框)控件很简单,可以节省空间.从用户角度来看,这个控件是由一个文本输入控件和一个下拉菜单组成的.用户可以从一个预先定义的列表里选择一个选项,同时也可以直接在文本框里面输入文本 ...
- MFC控件:listctrl使用方法总结
以下未经说明,listctrl默认view 风格为report 相关类及处理函数 MFC:CListCtrl类 SDK:以 “ListView_”开头的一些宏.如 ListView_InsertCol ...
- 洛谷P1919 【模板】A*B Problem升级版(FFT)
传送门 话说FFT该不会真的只能用来做这种板子吧…… 我们把两个数字的每一位都看作多项式的系数 然后这就是一个多项式乘法 上FFT就好了 然后去掉前导零 (然而连FFT的板子都背不来orz,而且空间又 ...
- iOS中UIWebView使用JS交互
iOS中偶尔也会用到webview来显示一些内容,比如新闻,或者一段介绍.但是用的不多,现在来教大家怎么使用js跟webview进行交互. 这里就拿点击图片获取图片路径为例: 1.测试页面html & ...
- P3809【模板】后缀排序
传送门 深入理解了一波后缀数组,这东西真的很妙诶,自己推感觉完全不现实,看来只能靠背代码了 这段时间就多敲敲,把板子记熟吧 代码: #include<cstdio> #include< ...
- struts2学习笔记 day02 获取参数 访问ServletAPI 结果类型
- aix 推荐使用重启
重启os AIX 主机 推荐 shutdown –Fr 在客户一次停机维护中,发现了这个问题. 环境是ORACLE 10G RAC for AIX6,使用了HACMP管理共享磁盘. 在停机维护时间段内 ...
- 排错:expected unqualified-id before string constant
一个低级但是不好定位的编译错误,常见的问题是: 1. 语句的 { 括号不匹配. 2. 缺少 : , 特别是类的定义或声明,枚举的定义. 3. 变量名或函数名使用了保留字.