[BZOJ4899]:记忆的轮廓(概率DP)
题目传送门
题目描述
输入格式
输出格式
样例
3 7 2
1 4
2 5
3 6
3 7
数据范围与提示
题解
设f[i]表示正确节点i走到n的期望步数,显然f[n]=0,我们倒着递推。
$ f[i]=1+ \frac{1}{d[i]} ×f[i+1]+ \frac{1}{d[i]}× \sum g[j]+f[i] $[j是i的错误儿子]
引用:移项得f[i]=d[i]+f[i+1]+s[i]
引用:复杂度线性。
首先我们需要预处理一个a[i,j],表示存档点为i,从i开始走到正确节点j的期望步数(中间不能存档)。
显然有边界条件a[i,i]=0。对于i<j,可以列出递推式:
a[i,j]=a[i,j-1]+1+1/d[j-1]*∑{g[k]+a[i,j]}[k是j-1的错误儿子]
引用:移项得a[i,j]=a[i,j-1]*d[j-1]+d[j-1]+s[j-1]
引用:可以用n^2的时间预处理a,然后做dp就很好转移了。
枚举下一次的存档点k,那么f[i,j]可以由f[k,j-1]+a[i,k]转移而来。
引用:复杂度O(n2p)
我们来估计答案的上界。考虑一种可行方案,每n/p个正确节点就设立一次存档位置,那么答案最大是多少呢?考虑最坏情况,观察a的转移,应该每变 换一次存档点,大约需要3(n/p)*s[i]+3(n/p-1)*s[i+1]+3(n/p-2)*s[i+2]+……
引用:因为最多m个节点,s的上限是1500(实际上也远远达不到),把所有s都视为这个上限,提取公因数,计算一下那个等比数列求和,由于p是有下界的, 因此n/p有上界14,发现最后也就是个12位数的样子,那么我们估计出答案最大也不会超过这个,可以放心做了。而至于a会爆炸的问题,double是可以 存很多位的,而且太大的a肯定不可能被用上。
那么其实,针对答案不会特别大,a的增长又很恐怖,我们还可以思考对70%的算法优化。那就是设定一个常数step,每次转移最多从距当前step步远的 位置转移过来。step取40多基本不会有问题了,因为a的下界已经是2^40了,而答案的上界远远没有达到,经过精确计算还可以再把step调小一点。
引用:复杂度O(np log ans)
代码时刻
#include<bits/stdc++.h>
using namespace std;
struct rec
{
int nxt;
int to;
}e[5000];
int head[5000],cnt;
int n,m,p;
double g[5000],s[5000],dp[5000];
bool vis[5000];
int du[5000];
void pre_work()//多测不清空,爆零两行泪……
{
memset(head,0,sizeof(head));
memset(dp,0,sizeof(dp));
memset(g,0,sizeof(g));
memset(s,0,sizeof(s));
memset(du,0,sizeof(du));
cnt=0;
}
void add(int x,int y)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
head[x]=cnt;
}
void dfsgetG(int x)//计算g数组
{
vis[x]=1;
g[x]=1;
for(int i=head[x];i;i=e[i].nxt)
{
dfsgetG(e[i].to);
g[x]+=g[e[i].to]*1.0/(double)du[x];
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
pre_work();
scanf("%d%d%d",&n,&m,&p);
for(int i=1;i<=n-1;i++)du[i]=1;//1-(n-1)中,每一个节点都要加上它到下一个正确节点的边
for(int i=n+1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
du[a]++;
add(a,b);
}
for(int i=n+1;i<=m;i++)
{
if(vis[i])continue;
dfsgetG(i);
}
for(int i=1;i<=n;i++)
for(int j=head[i];j;j=e[j].nxt)
s[i]+=g[e[j].to];//计算s数组
for(int i=n-1;i;i--)//倒推计算答案
dp[i]=dp[i+1]+du[i]+s[i];
cout<<fixed<<setprecision(4)<<dp[1]<<endl;//保留小数输出
}
return 0;
}
70%代码:
#include<bits/stdc++.h>
using namespace std;
struct rec
{
int nxt;
int to;
}e[2000];
int head[2000],cnt;
int n,m,p;
double g[2000],s[2000],dp[2000][2000],Map[2000][2000];
bool vis[2000];
int du[2000];
void pre_work()
{
for(int i=0;i<=1;i++)e[i].nxt=e[i].to=0;
memset(head,0,sizeof(head));
memset(dp,127,sizeof(dp));
memset(g,0,sizeof(g));
memset(s,0,sizeof(s));
memset(du,0,sizeof(du));
memset(Map,0,sizeof(Map));
memset(vis,0,sizeof(vis));
cnt=0;
}
void add(int x,int y)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
head[x]=cnt;
}
void dfsgetG(int x)
{
vis[x]=1;
g[x]=1;
for(int i=head[x];i;i=e[i].nxt)
{
dfsgetG(e[i].to);
g[x]+=g[e[i].to]*1.0/(double)du[x];
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
pre_work();
scanf("%d%d%d",&n,&m,&p);
for(int i=1;i<=n-1;i++)du[i]=1;
for(int i=n+1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
du[a]++;
add(a,b);
}
for(int i=n+1;i<=m;i++)
{
if(vis[i])continue;
dfsgetG(i);
}
for(int i=1;i<=n;i++)
for(int j=head[i];j;j=e[j].nxt)
s[i]+=g[e[j].to];
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
Map[i][j]=(Map[i][j-1]+1)*(double)du[j-1]+s[j-1];//计算a数组
dp[n][1]=0;//dp初始
for(int j=2;j<=p;j++)
for(int i=1;i<=n;i++)
for(int k=i+1;k<=n;k++)
dp[i][j]=min(dp[i][j],dp[k][j-1]+Map[i][k]);
cout<<fixed<<setprecision(4)<<dp[1][p]<<endl;
}
return 0;
}
100%算法:
#include<bits/stdc++.h>
using namespace std;
struct rec
{
int nxt;
int to;
}e[2000];
int head[2000],cnt;
int n,m,p;
double g[2000],s[2000],dp[2000][2000],Map[2000][2000];
bool vis[2000];
int du[2000];
void pre_work()
{
for(int i=0;i<=1;i++)e[i].nxt=e[i].to=0;
memset(head,0,sizeof(head));
memset(dp,127,sizeof(dp));
memset(g,0,sizeof(g));
memset(s,0,sizeof(s));
memset(du,0,sizeof(du));
memset(Map,0,sizeof(Map));
memset(vis,0,sizeof(vis));
cnt=0;
}
void add(int x,int y)
{
e[++cnt].nxt=head[x];
e[cnt].to=y;
head[x]=cnt;
}
void dfsgetG(int x)
{
vis[x]=1;
g[x]=1;
for(int i=head[x];i;i=e[i].nxt)
{
dfsgetG(e[i].to);
g[x]+=g[e[i].to]*1.0/(double)du[x];
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
pre_work();
scanf("%d%d%d",&n,&m,&p);
for(int i=1;i<=n-1;i++)du[i]=1;
for(int i=n+1;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
du[a]++;
add(a,b);
}
for(int i=n+1;i<=m;i++)
{
if(vis[i])continue;
dfsgetG(i);
}
for(int i=1;i<=n;i++)
for(int j=head[i];j;j=e[j].nxt)
s[i]+=g[e[j].to];
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
Map[i][j]=(Map[i][j-1]+1)*(double)du[j-1]+s[j-1];
dp[n][1]=0;
for(int j=2;j<=p;j++)
for(int i=1;i<=n;i++)
for(int k=i+1;k<=min(n,i+12);k++)//优化上界
dp[i][j]=min(dp[i][j],dp[k][j-1]+Map[i][k]);
cout<<fixed<<setprecision(4)<<dp[1][p]<<endl;
}
return 0;
}
rp++
[BZOJ4899]:记忆的轮廓(概率DP)的更多相关文章
- [bzoj4899]记忆的轮廓 题解(毒瘤概率dp)
题目背景 四次死亡轮回后,昴终于到达了贤者之塔,当代贤者夏乌拉一见到昴就上前抱住了昴“师傅!你终于回来了!你有着和师傅一样的魔女的余香,肯定是师傅”.众所周知,大贤者是嫉妒魔女沙提拉的老公,400年前 ...
- Bzoj4899 记忆的轮廓
B. 记忆的轮廓 题目描述 通往贤者之塔的路上,有许多的危机.我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增,在[1,n]中,一共有n个节点.我 ...
- BZOJ4899: 记忆的轮廓【概率期望DP】【决策单调性优化DP】
Description 通往贤者之塔的路上,有许多的危机. 我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增, 在[1,n]中,一共有n个节点.我 ...
- BZOJ4899 记忆的轮廓(概率期望+动态规划+决策单调性)
容易发现跟树没什么关系,可以预处理出每个点若走向分叉点期望走多少步才能回到上个存档点,就变为链上问题了.考虑dp,显然有f[i][j]表示在i~n中设置了j个存档点,其中i设置存档点的最优期望步数.转 ...
- BZOJ4832: [Lydsy1704月赛]抵制克苏恩 (记忆化搜索 + 概率DP)
题意:模拟克苏恩打奴隶战对对方英雄所造成的伤害 题解:因为昨(今)天才写过记忆化搜索 所以这个就是送经验了 1A还冲了个榜 但是我惊奇的发现我数组明明就比数据范围开小了啊??? #include &l ...
- zoj 3640 Help Me Escape 概率DP
记忆化搜索+概率DP 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...
- bzoj 4899 记忆的轮廓 题解(概率dp+决策单调性优化)
题目背景 四次死亡轮回后,昴终于到达了贤者之塔,当代贤者夏乌拉一见到昴就上前抱住了昴“师傅!你终于回来了!你有着和师傅一样的魔女的余香,肯定是师傅”.众所周知,大贤者是嫉妒魔女沙提拉的老公,400年前 ...
- 记忆的轮廓 期望 四边形不等式dp|题解
记忆的轮廓 题目描述 通往贤者之塔的路上,有许多的危机.我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增,在[1,n]中,一共有n个节点.我们把编 ...
- HDU 5001 概率DP || 记忆化搜索
2014 ACM/ICPC Asia Regional Anshan Online 给N个点,M条边组成的图,每一步能够从一个点走到相邻任一点,概率同样,问D步后没走到过每一个点的概率 概率DP 測 ...
随机推荐
- CodeForces 644B【模拟】
题意: 查询数 和 最大的队列容量+1: 按时间顺序 ti代表,第i个出线的时间: di代表,第i个需要处理的时间: 对于第i个输出他所需要的时间完成,或者拒绝进入输出-1: 思路: 真是MDZZ了, ...
- Pro Android学习笔记(一五四):传感器(4):陀螺仪、加速传感器
文章转载只能用于非商业性质,且不能带有虚拟货币.积分.注册等附加条件.转载须注明出处http://blog.csdn.net/flowingflying/以及作者@恺风Wei. 陀螺仪 陀螺仪(Gyr ...
- Android 跨应用调用Activity
http://blog.csdn.net/ouyangliping/article/details/7972141 如何调用另外一个app应用的activity或者service,本文提供一个验证可行 ...
- c#二维数组传递与拷贝
定义 string[,] arr = new string[12, 31] 另一种string[][] ary = new string[5][];相当于一维数组 常量二维数组定义, 用readonl ...
- 3DMAX 4角色蒙皮
1 角色建模 略,以后补充 2 骨骼绑定 一般不用骨骼直接拉,Biped足够,以后适当补充骨骼直接拉的操作 1 将Biped骨骼和模型对齐 1 创建biped之后,第一步一要先选择,然后再对位骨骼到模 ...
- 我叫mt3.2更新公告
1.增加装备合成功能 可以用材料将现有的75级紫装升级为80级紫装. 2.增加全新公会副本 增加新的公会副本:神庙外围.掉落可以进阶装备的材料. 3.增加全新个人副本 增加新的个人副本:奴隶市场. 4 ...
- 16.join 用法(拼接列表时里面必须为str类型)
s1='alex' s2='+'.join(s1) print(s2,type(s2))#a+l+e+x <class 'str'> l1=['小红','小刚','小明'] 前提:列表中的 ...
- PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)
嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...
- [软件工程基础]2017.11.03 第七次 Scrum 会议
具体事项 项目交接燃尽图 每人工作内容 成员 已完成的工作 计划完成的工作 工作中遇到的困难 游心 #10 搭建可用的开发测试环境:#9 阅读分析 PhyLab 后端代码与文档:#8 掌握 Larav ...
- mysql 维护添加远程主机访问
https://www.cnblogs.com/JNUX/p/6936548.html