BZOJ 3384 上帝与集合的正确用法
上帝与集合的正确用法
【问题描述】

【输入格式】
【输出格式】
【样例输入】
3
2
3
6
【样例输出】
0
1
4
【数据范围】
题解:
①->②:把模数 p 拆成 2kq 的形式,其中 q 是奇数
②->③:

将上式左右同除以2k

不会同余的蒟蒻只能这么推了
③->④:
此时 q 是奇数,必定与 2n 互质
则套用欧拉定理
考虑一个数的 phi 必定比它本身的值小
那么如此递归下去模数会变为 1,则返回 0
回溯得到答案
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n;
inline void Scan(int &x)
{
char c;
bool o = false;
while(!isdigit(c = getchar())) o = (c != '-') ? o : true;
x = c - '';
while(isdigit(c = getchar())) x = x * + c - '';
if(o) x = -x;
}
int Phi(int x)
{
int ans = x;
for(int i = ; i * i <= x; ++i)
{
if(!(x % i))
{
while(!(x % i)) x /= i;
ans /= i, ans *= (i - );
}
}
if(x ^ ) ans /= x, ans *= (x - );
return ans;
}
int Pow(int x, int n, int mod)
{
int sum = ;
while(n)
{
if(n & ) sum = (long long) sum * x % mod;
x = (long long) x * x % mod;
n >>= ;
}
return sum % mod;
}
int Work(int p)
{
if(p == ) return ;
int k = ;
while(!(p & )) p >>= , ++k;
int phi = Phi(p);
int s = (Work(phi) - k) % phi;
if(s < ) s += phi;
return Pow(, s, p) << k;
}
int main()
{
Scan(n);
int p;
for(int i = ; i <= n; ++i)
{
Scan(p);
printf("%d\n", Work(p));
}
}
BZOJ 3384 上帝与集合的正确用法的更多相关文章
- bzoj 3884 上帝与集合的正确用法 指数循环节
3884: 上帝与集合的正确用法 Time Limit: 5 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 根据一些 ...
- 【数学】[BZOJ 3884] 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元” ...
- BZOJ 3884 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作&quo ...
- bzoj P3884 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0) ...
- BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]
PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...
- BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...
- 解题:BZOJ 3884 上帝与集合的正确用法
题面 好久以前写的,发现自己居然一直没有写题解=.= 扩展欧拉定理:在$b>φ(p)$时有$a^b \equiv a^{b\%φ(p)+φ(p)}(mod$ $p)$ 然后每次递归那个$a^{b ...
随机推荐
- "mysql"."innodb_table_stats" not found 故障解决
故障描述 "mysql"."innodb_table_stats" 表不存在 "mysql"."innodb_index_stat ...
- 6- vue django restful framework 打造生鲜超市 -完成商品列表页(下)
Vue+Django REST framework实战 搭建一个前后端分离的生鲜超市网站 Django rtf 完成 商品列表页下 drf中的request和response drf对于django的 ...
- JZOJ 2499. 东风谷早苗
2499. 东风谷早苗 (Standard IO) Time Limits: 1000 ms Memory Limits: 131072 KB Detailed Limits Goto Pro ...
- 震惊!几道Python 理论面试题,Python面试题No18
本面试题题库,由公号:非本科程序员 整理发布 第1题: 简述解释型和编译型编程语言? 解释型语言编写的程序不需要编译,在执行的时候,专门有一个解释器能够将VB语言翻译成机器语言,每个语句都是执行的时候 ...
- HDU - 6514 Monitor(二维差分)
题意 给定一个\(n×m\)的矩阵.(\(n×m <= 1e7\)). \(p\)次操作,每次可以在这个矩阵中覆盖一个矩形. \(q\)次询问,每次问一个矩形区域中,是否所有的点都被覆盖. 解析 ...
- 【转】Python操作MongoDB
Python 操作 MongoDB 请给作者点赞--> 原文链接 这篇文章主要介绍了使用Python脚本操作MongoDB的教程,MongoDB作为非关系型数据库得到了很大的宣传力度,而市面 ...
- Git-Git初始化
创建版本库及第一次提交 通过如下操作来查看一下您的Git版本. $ git --version git version 1.7.4 在开始 Git 之旅之前,我们需要设置一下 Git 的配置变量,这是 ...
- asp.net实现调用ffmpeg实现视频格式的转换
视频格式转换的函数 //视频转换 public void VideoConvertFlv(string FromName, string ExportName) { string ffmpeg = H ...
- 高亮T4模板
http://t4-editor.tangible-engineering.com/Download_T4Editor_Plus_ModelingTools.html
- IOS开发学习笔记011-xcode使用技巧
xcode使用技巧 1.自动生成类 2.断点调试 3.代码段保存 4.注释标记 1.新建类,自动生成两个文件和基本结构 第一步 第二步,选择新建一个类,而不是一个源文件 第三步,书写类名一级自己要 ...