TYOI 1015 Game:博弈 结论【步数之和的奇偶性】
题意:
明明和亮亮在玩一个游戏。
桌面上一行有n个格子,一些格子中放着棋子。
明明和亮亮轮流选择如下方式中的一种移动棋子(图示中o表示棋子,*表示空着的格子):
(1)当一枚棋子的右边是空格子的话,可以将这枚棋子像右移动一格。
**o*** -> ***o**
(2)当一枚棋子的右边连续两个都有棋子,并且这个棋子往右边数第3格没有棋子,那么可以将这个棋子可以跳过去那两个棋子
**ooo* -> ***oo*
当任何一枚棋子到达最右边的格子时,这枚棋子自动消失。
当一方不能移动时,这方输。
假设明明和亮亮都采取最优策略,明明先走,谁将取胜?
题解:
走一步和走三步都是走奇数步。
所以统计一下每个棋子到终点的步数之和tot。如果tot为奇数,则先手胜,否则后手胜。
AC Code:
#include <iostream>
#include <stdio.h>
#include <string.h> using namespace std; int n,t;
int tot; int main()
{
cin>>t;
while(t--)
{
cin>>n;
tot=;
char c;
for(int i=n-;i>=;i--)
{
cin>>c;
if(c=='o') tot+=i;
}
if(tot&) cout<<"M"<<endl;
else cout<<"L"<<endl;
}
}
Game
【题目描述】
明明和亮亮在玩一个游戏。桌面上一行有n个格子,一些格子中放着棋子。明明和亮亮轮流选择如下方式中的一种移动棋子(图示中o表示棋子,*表示空着的格子):
1)当一枚棋子的右边是空格子的话,可以将这枚棋子像右移动一格。
**o*** -> ***o**
2)当一枚棋子的右边连续两个都有棋子,并且这个棋子往右边数第3格没有棋子,那么可以将这个棋子可以跳过去那两个棋子
**ooo* -> ***oo*
当任何一枚棋子到达最右边的格子时,这枚棋子自动消失。当一方不能移动时,这方输。假设明明和亮亮都采取最优策略,明明先走,谁将取胜?
TYOI 1015 Game:博弈 结论【步数之和的奇偶性】的更多相关文章
- 关于NIM博弈结论的证明
关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...
- 【NOIP 模拟赛】 道路
题目描述在二维坐标平面里有 N 个整数点,信息班某一巨佬要访问这 N 个点.刚开始巨佬在点(0,0)处. 每一步,巨佬可以走到上.下.左.右四个点.即假设巨佬当前所在点的坐标是(x,y),那么它下一步 ...
- NOIP2017提高组模拟赛 8(总结)
NOIP2017提高组模拟赛 8(总结) 第一题 路径 在二维坐标平面里有N个整数点,Bessie要访问这N个点.刚开始Bessie在点(0,0)处. 每一步,Bessie可以走到上.下.左.右四个点 ...
- 简单易懂的博弈论讲解(巴什博弈、尼姆博弈、威佐夫博弈、斐波那契博弈、SG定理)
博弈论入门: 巴什博弈: 两个顶尖聪明的人在玩游戏,有一堆$n$个石子,每次每个人能取$[1,m]$个石子,不能拿的人输,请问先手与后手谁必败? 我们分类讨论一下这个问题: 当$n\le m$时,这时 ...
- UVA 10795 A Different Task(汉诺塔 递归))
A Different Task The (Three peg) Tower of Hanoi problem is a popular one in computer science. Briefl ...
- DFS中的奇偶剪枝学习笔记
奇偶剪枝学习笔记 描述 编辑 现假设起点为(sx,sy),终点为(ex,ey),给定t步恰好走到终点, s | | | + — — — e 如图所示(“|”竖走,“—”横走,“+”转弯),易证abs( ...
- 「UOJ351」新年的叶子
「UOJ351」新年的叶子 题目描述 有一棵大小为 \(n\) 的树,每次随机将一个叶子染黑,可以重复染,问期望染多少次后树的直径会缩小. \(1 \leq n \leq 5 \times 10^5\ ...
- acm博弈论基础总结
acm博弈论基础总结 常见博弈结论 Nim 问题:共有N堆石子,编号1..n,第i堆中有个a[i]个石子. 每一次操作Alice和Bob可以从任意一堆石子中取出任意数量的石子,至少取一颗,至多取出这一 ...
- Ideas and Tricks
1.树上拓扑排序计数 结论$\dfrac{n!}{\prod\limits_{i=1}^n size_i}$ 对于节点$i$,其子树随意排序的结果是$size[i]!$ 但$i$需要排在第一位,只有$ ...
随机推荐
- IE对CSS样式的数量和大小的限制
项目中遇到的问题,css写的样式无法渲染,各种百度后发现大概是这个原因: IE对CSS样式的数量和大小的限制 文档中只有前31个link或style标记关联的CSS能够应用. 从第32个开始,其标记关 ...
- npm安装package.json
npm安装package.json时,直接转到当前项目目录下,用命令npm install 或npm install --save-dev安装即可,自动将package.json中的模块安装到node ...
- Html5上传插件封装
前段时间将flash的上传控件替换成使用纯js实现的,在此记录 1.创建标签 <div class="camera-area" style="display:inl ...
- 自定义带下划线文本的UIButton
转载自 http://mobile.51cto.com/hot-404798.htm,略有改动 UnderLineButton.h代码 @interface UnderLineButton : UIB ...
- cheap louis vuitton outlet
<h1>louis vuitton outlet store</h1>2 nigerian networking systems chosen seeing that enem ...
- mysql经常使用查询:group by,左连接,子查询,having where
前几天去了两个比較牛的互联网公司面试.在sql这块都遇到问题了,哎.可惜呀,先把简单的梳理一下 成绩表 score 1.group by 使用 按某一个维度进行分组 比如: 求每一个同学的总分 SEL ...
- spring中的异步事件
这里讲解一下Spring对异步事件机制的支持,实现方式有两种: 1.全局异步 即只要是触发事件都是以异步执行,具体配置(spring-config-register.xml)如下: Java代码 ...
- Django之sitemap
##########settings.py SITE_ID=1 # Application definition # taggit tag INSTALLED_APPS = [ 'myblog', ' ...
- redis配置认证密码(转)
redis配置密码 1.通过配置文件进行配置yum方式安装的redis配置文件通常在/etc/redis.conf中,打开配置文件找到 ? 1 #requirepass foobared 去掉行前的注 ...
- load-on-startup 解释
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" &qu ...